
Speech Signal Representation 

• Fourier Analysis 

– Discrete-time Fourier transform 
– Short-time Fourier transform 
– Discrete Fourier transform 

• Cepstral Analysis 

– The complex cepstrum and the cepstrum 
– Computational considerations 
– Cepstral analysis of speech 
– Applications to speech recognition 
– Mel-Frequency cepstral representation 

• Performance Comparison of Various Representations 
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� � � � � 

Discrete-Time Fourier Transform 
 +∞    X (ejω) =  x[n]e −jωn   n=−∞ 

  � π


 x[n] = 2
1 
π

X (ejω)ejωndω

−π 

+∞ � � 
• Sufficient condition for convergence: �x[n]� < +∞ 

n=−∞ 

• Although x[n] is discrete, X (ejω) is continuous and periodic with period 2π. 

• Convolution/multiplication duality: 

    

   


 y[n] =  x[n] ∗ h[n]


 
Y (ejω) =  X (ejω)H(ejω) 

y[n] =  x[n]w[n] 

� π 

Y (ejω) = 2
1 
π

W (ejθ )X (ej(ω−θ))dθ 
−π 
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Short-Time Fourier Analysis 
(Time-Dependent Fourier Transform) 

w [ 50 - m ] w [ 100 - m ] w [ 200 - m ] 

x [ m ] 

m 

0 n = 50 n = 100 n = 200 

+∞ 

Xn(ejω) =  w[n − m]x[m]e−jωm 

m=−∞ 

• If n is fixed, then it can be shown that: 

� π 

Xn(ejω) =  2
1 
π

W (ejθ)ejθnX (ej(ω+θ))dθ 
−π 

•	 The above equation is meaningful only if we assume that X (ejω) represents the 
Fourier transform of a signal whose properties continue outside the window, or 
simply that the signal is zero outside the window. 

•	 In order for Xn(ejω) to correspond to X (ejω), W (ejω) must resemble an impulse 
with respect to X (ejω). 
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Rectangular Window 

w[n] = 1, 0 ≤ n ≤ N − 1
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� 

Hamming Window 

� 
2πn


w[n] = 0.54 − 0.46cos 
N − 1 

, 0 ≤ n ≤ N − 1
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Comparison of Windows 
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Comparison of Windows (cont’d) 
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A Wideband Spectrogram 

Two plus seven is less than ten 
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A Narrowband Spectrogram 

Two plus seven is less than ten 
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Discrete Fourier Transform 

x[n] ⇐⇒ X [k] =  X (z) |
z=e

j 2πk n
M 

Npoints Mpoints 

 
N−1   M
 X [k] =  x[n]e −j 2πk n


 n=0 


 M−1



M x[n] =  

1 � 
X [k]ej 2πk n  

M 
k=0 

In general, the number of input points, N, and the number of frequency samples, 
M, need not be the same. 

• If M > N , we must zero-pad the signal 

• If M < N , we must time-alias the signal 
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Examples of Various Spectral Representations 
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Cepstral Analysis of Speech 

Voiced 

u [ n ] H ( z ) s [ n ] 

Unvoiced 

•	 The speech signal is often assumed to be the output of an LTI system; i.e., it is 
the convolution of the input and the impulse response. 

•	 If we are interested in characterizing the signal in terms of the parameters of 
such a model, we must go through the process of de-convolution. 

• Cepstral, analysis is a common procedure used for such de-convolution. 
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Cepstral Analysis 

• Cepstral analysis for convolution is based on the observation that: 

x[n] =  x1[n] ∗ x2[n] ⇐⇒ X (z) =  X1(z)X2(z) 

By taking the complex logarithm of X (z), then 

ˆlog{X (z)} = log{X1(z)} + log{X2(z)} = X(z) 

• If the complex logarithm is unique, and if X̂ (z) is a valid z-transform, then 

ˆ x1(n) + ˆx(n) = ˆ x2(n) 

The two convolved signals will be additive in this new, cepstral domain. 

• If we restrict ourselves to the unit circle, z = ejω, then: 

X̂ (ejω) = log |X(ejω)| + j arg{X(ejω)} 
It can be shown that one approach to dealing with the problem of uniqueness is 
to require that arg{X(ejω)} be a continuous, odd, periodic function of ω. 
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Cepstral Analysis (cont’d) 

• To the extent that X̂ (z) = log{X(z)} is valid, 

 � +π   ˆ  x[n] = 2
1 
π  −π




 � +π

1=  2π  −π 



 � +π


 c[n] = 2
1 
π −π 

X̂ (ejω) ejωndω 

complex
log{X (ejω)} ejωndω cepstrum 

log |X (ejω)| ejωndω cepstrum 

• It can easily be shown that c[n] is the even part of x̂[n]. 

• If ˆ x[n] be recovered from c[n]. This is known as thex[n] is real and causal, then ˆ 
Minimum Phase condition. 
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An Example 

p[n] =  δ[n] +  αδ[n − N ] 0 < α <  1 

P(z) = 1 + αz−N 

P̂(z) =  log 

= log 

P(z) = log 1 +  αz−N 

1 − (−α)(zN )−1
� 

= 

P̂(z) =  

p̂[n] =  

∞ 

n=1 

∞ 

n=1 

∞ 

r=1 

(−1)n+1 α
n 

n 

(−1)n+1 α
n 

n 

(−1)r+1 α
r 

r 

z −nN 

(zN )−n 

δ[n − rN] 
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An Example (cont’d) 
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Computational Considerations 

•	 We now replace the Fourier transform expressions by the discrete Fourier 
transform expressions : 

       

      

N−1 

Xp [k] =  x[n]e −j 2 
N
π kn 0 ≤ k ≤ N − 1 

n=0 

X̂p [k] =  log{Xp [k]} 0 ≤ k ≤ N − 1 
N −1 

ˆ ˆ xp [n] = 1 Xp [k] ej 2 
N
π kn 0 ≤ n ≤ N − 1

N 
k=0 

• Xp [k] is a sampled version of ˆˆ X (ejω). Therefore, 
∞ 

ˆ ˆxp [n] =  x[n + rN] 
r=−∞ 

∞•	 Likewise: � 
cp [n] =  c[n + rN] 

r=−∞ 

where, N −1 

cp [n] =
1 

log |Xp [k]| ej 2 
N
π kn 0 ≤ n ≤ N − 1 

N 
k=0 

• To minimize aliasing, N must be large. 
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Cepstral Analysis of Speech 

• For voiced speech: 
∞ 

s[n] =  p[n] ∗ g[n] ∗ v[n] ∗ r[n] =  p[n] ∗ hv [n] =  hv [n − rNp ]. 
r=−∞ 

• For unvoiced speech: s[n] =  w[n] ∗ v[n] ∗ r[n] =  w[n] ∗ hu[n]. 

•	 Contributions to the cepstrum due to periodic excitation will occur at integer 
multiples of the fundamental period. 

•	 Contributions due to the glottal waveform (for voiced speech), vocal tract, and 
radiation will be concentrated in the low quefrency region, and will decay rapidly 
with n. 

•	 Deconvolution can be achieved by multiplying the cepstrum with an appropriate 
window, l[n]. 

s [n ] 
x 

x [n ] 
D [ 
* y [x [

D [ 
 * y [

-1 
x ] 

n]n ] 
]

n] 

w [ n] l [n ] 

where D∗ is the characteristic system that converts convolution into addition. 

• Thus cepstral analysis can be used for pitch extraction and formant tracking. 
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Example of Cepstral Analysis of Vowel 
(Rectangular Window) 
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Example of Cepstral Analysis of Vowel 
(Tapering Window) 
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Example of Cepstral Analysis of Fricative 
(Rectangular Window) 
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Example of Cepstral Analysis of Fricative 
(Tapering Window) 
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The Use of Cepstrum for Speech Recognition


Many current speech recognition systems represent the speech signal as a set of 
cepstral coefficients, computed at a fixed frame rate. In addition, the time 
derivatives of the cepstral coefficients have also been used. 
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Statistical Properties of Cepstral Coefficients 
(Tohkura, 1987) 

From a digit database (100 speakers) over dial-up telephone lines. 

6.345 Automatic Speech Recognition (2003) Speech Signal Representaion 24






Signal Representation Comparisons 

•	 Many researchers have compared cepstral representations with Fourier-, LPC-, 
and auditory-based representations. 

•	 Cepstral representation typically out-performs Fourier- and LPC-based 
representations. 

Example: Classification of 16 vowels using ANN (Meng, 1991) 
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Acoustic Representation 

•	 Performance of various signal representations cannot be compared without 
considering how the features will be used, i.e., the pattern classification 
techniques used. (Leung, et al., 1993). 
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Things to Ponder... 

•	 Are there other spectral representations that we should consider (e.g., models of 
the human auditory system)? 

•	 What about representing the speech signal in terms of phonetically motivated 
attributes (e.g., formants, durations, fundamental frequency contours)? 

•	 How do we make use of these (sometimes heterogeneous) features for 
recognition (i.e., what are the appropriate methods for modelling them)? 
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