Lecture #5
Session 2003

Speech Signal Representation

e Fourier Analysis

— Discrete-time Fourier transform
— Short-time Fourier transform
— Discrete Fourier transform

e Cepstral Analysis

— The complex cepstrum and the cepstrum
— Computational considerations

— Cepstral analysis of speech

— Applications to speech recognition

— Mel-Frequency cepstral representation

e Performance Comparison of Various Representations
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Discrete-Time Fourier Transform

r +00
X(e®) = > x[nle7*"
Nn=—00
1T . .
x[n] = %J X(@?)el"d w
- —TT
+00
e Sufficient condition for convergence: Z x[n]‘<+oo
Nn=—0o0

e Although x[n] is discrete, X(e/?) is continuous and periodic with period 27r.
e Convolution/multiplication duality:

{ yln] = x[n] * h[n]
Y(e/?) =X(e/®)H(e/?)

r

yln] =x[n]lw([n]

Y(ejw) =#‘[ W(ejQ)X(ej(“’—e))dQ

"
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Short-Time Fourier Analysis
(Time-Dependent Fourier Transform)

w[50-m] w[l'OO-m] w[200-m]

x[m]

Pt »’i Y LA PNy
e

0 n =50 n =100 n =200

X, (e/?) = +zoo'_ wln — mlx[mle7®m

m=—oo

e If nis fixed, then it can be shown that:
Xn(e/®) = %J W (e/®)e®nX (/)4

e The above equation is meaningful only if we assume that X(e/®) represents the

Fourier transform of a signal whose properties continue outside the window, or
simply that the signal is zero outside the window.

e In order for X,(e/?) to correspond to X(e/®), W(e/®) must resemble an impulse
with respect to X(e/?).
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Rectangular Window
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Hamming Window

0<n<N_I

wln] = 0.54 — 0.46¢0s (N . )
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Comparison of Windows

Hamming V¥s. Rectangqular Spectra

0.3082
AWV WAV~ —
0.2082 M=MAT Original Waveform 0.4082
0. M-MNAT Hamming Window: 100 8000. 0. M-NAT Rectangular Window: 100 8000.
0. M=-MNAT Hamming Window: 300 8000. 0. M-NAT Rectangular Window: 300 8000.
0. M=MAT Hamming Window: 500 8000. 0. M=-MAT Rectangular Window: 500 8000.
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Comparison of Windows (cont’d)

0.3082
M-MAT '
0. M-MAT Hamming Window: 100 8000.
0.3082
0.2932 M=MNAT Original Waveform 0.3244
0. M=-MNAT Hamming Window: 500 8000.
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A Wideband Spectrogram
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Two plus seven is less than ten
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A Narrowband Spectrogram
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Discrete Fourier Transform

x[n] — X[k]=X(2) IZ 21k

=/ M "
Npoints Mpoints
[ N=1 - 21Tk
X[k] = Z x[nle” "
n=0
1 M=] 27Tk
x[n] = i > X[kle/ "
~ k=0

In general, the number of input points, N, and the number of frequency samples,
M, need not be the same.

e If M > N, we must zero-pad the signal
o If M <N, we must time-alias the signal

6.345 Automatic Speech Recognition (2003) Speech Signal Representaion 10



Examples of Various Spectral Representations

0.6606

A

0. HL-14-4-JP 8000.

0. HL-14-4-.1P 8000.

i

0. HL-14-4-JF LFPC Spectral Slice 8000. 0. HL=-14=4=-JP 8000.
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Cepstral Analysis of Speech

Voiced \ \ \
ufn] — H(z) = s[n]

e The speech signal is often assumed to be the output of an LTI system; i.e., it is
the convolution of the input and the impulse response.

e If we are interested in characterizing the signal in terms of the parameters of
such a model, we must go through the process of de-convolution.

e Cepstral, analysis is a common procedure used for such de-convolution.
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Cepstral Analysis

e Cepstral analysis for convolution is based on the observation that:
x[nl = x;[n] « x;[n] = X(z) = X1(2)X,(2)
By taking the complex logarithm of X(z), then
log{X(2)} = log{X1(2)} + log{X»(2)} = X(2)
e If the complex logarithm is unique, and if X(z) is a valid z-transform, then
X(n) = x1(n) +Xx2(n)

The two convolved signals will be additive in this new, cepstral domain.

e If we restrict ourselves to the unit circle, z = ¢/®, then:
X(e/®) =log |X(e/®)| +j arg{X(e/®)}

It can be shown that one approach to dealing with the problem of uniqueness is
to require that arg{X(e/®)} be a continuous, odd, periodic function of w.
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Cepstral Analysis (cont’d)

e To the extent that X(z) = log{X(z)} is valid,

r r +TT
X[n] == X(e?) e/*"dw
J =TT
[ : : complex
= o logiX(e/®)} &/“"dw cepslgrum
J =TT
+TT ) )
cln] = % J log |[X(e’®)| e/“"dw cepstrum
- —TT

e It can easily be shown that c[n] is the even part of X[n].

e If X[n] is real and causal, then X[n] be recovered from c[n]. This is known as the
Minimum Phase condition.
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An Example

pln] =406[n]+ad[n—-N] O<a<l1

P(z) =1+oz™

P(z) =log[P(z)]=log[l+az™N]
=log[1 — (—&x)(zV)!]
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An Example (cont’d)

~-0.0040 IMPULSE-DELAYED Original Waveform 0.0040

0.0000 IMPULSE-~DELAYED Cepstrum Slice 0.0080
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Computational Considerations

e We now replace the Fourier transform expressions by the discrete Fourier
transform expressions :

r N-1
Xp[k] =Y x[nle?¥k  0<k<N-1
n=0
1 X,[k] =logi{X,[k]} 0<k<N-1
N-1
fplnl =L N X kle/T 0<n<N-1
- k=0

e X,[k] is a sampled version of X(e/®). Therefore,

o0

R,nl= S R(n+rN]

y=—00

o Likewise: i
cplnl= > cln+rN]

r=—00

where, 1 N-1 o
cplnl =< > loglX,[kll /¥ " 0<n<N-1
k=0

e To minimize aliasing, N must be large.
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Cepstral Analysis of Speech

For voiced speech:

s[nl = pln] * gln] * v[n] x r[n] = p[n] x hy[n] = > h,[n—rN,].

r=—o00

For unvoiced speech: s[n] = w[n] x v[n] x r[n] = w[n] x h,[n].

Contributions to the cepstrum due to periodic excitation will occur at integer
multiples of the fundamental period.

Contributions due to the glottal waveform (for voiced speech), vocal tract, and
radiation will be concentrated in the low quefrency region, and will decay rapidly
with n.

Deconvolution can be achieved by multiplying the cepstrum with an appropriate

window, I[n].
&) D ——()— D,
s[n] T x [n] ARy X [n] T y[n] *1[ ] y[n]

w[n] I [n]

where D, is the characteristic system that converts convolution into addition.
Thus cepstral analysis can be used for pitch extraction and formant tracking.
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Example of Cepstral Analysis of Vowel

(Rectangular Window)
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Example of Cepstral Analysis of Vowel

(Tapering Window)
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Example of Cepstral Analysis of Fricative
(Rectangular Window)

0.7480 SX?7+B-MRKMO Wide~-Band Spectrogram . 1.9804 0. SX7-B-MRKMO FFT Spectral Slice (25 msec) | 8000.
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Example of Cepstral Analysis of Fricative
(Tapering Window)
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The Use of Cepstrum for Speech Recognition

Many current speech recognition systems represent the speech signal as a set of

cepstral coefficients, computed at a fixed frame rate. In addition, the time
derivatives of the cepstral coefficients have also been used.
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] .
Wlde Band Spectrogram
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Statistical Properties of Cepstral Coefficients
(Tohkura, 1987)

From a digit database (100 speakers) over dial-up telephone lines.
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equency Cepstral Representation
ermelstein & Davis, 1980)

Some recognition systems use Mel-scale cepstral coefficients to mimic auditory
processing. (Mel frequency scale is linear up to 1000 Hz and logarithmic
thereafter.) This is done by multiplying the magnitude (or log magnitude) of S(e/%)
with a set of filter weights as shown below:
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Signal Representation Comparisons

e Many researchers have compared cepstral representations with Fourier-, LPC-,
and auditory-based representations.

e Cepstral representation typically out-performs Fourier- and LPC-based
representations.

Example: Classification of 16 vowels using ANN (Meng, 1991)

B Clean Data

B Noisy Data
70

66.1

61.7
61.6
61.2

Testing Accuracy (%)

Auditory Model MFSC MFCC DFT
Acoustic Representation

e Performance of various signal representations cannot be compared without
considering how the features will be used, i.e., the pattern classification
techniques used. (Leung, et al., 1993).
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Things to Ponder...

e Are there other spectral representations that we should consider (e.g., models of
the human auditory system)?

e What about representing the speech signal in terms of phonetically motivated
attributes (e.g., formants, durations, fundamental frequency contours)?

e How do we make use of these (sometimes heterogeneous) features for
recognition (i.e., what are the appropriate methods for modelling them)?
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