Lecture # 6
Session 2003

Vector Quantization and Clustering

e Introduction
e K-means clustering
e Clustering issues
e Hierarchical clustering
— Divisive (top-down) clustering
— Agglomerative (bottom-up) clustering

e Applications to speech recognition
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Acoustic Modelling

Signal Vector
Representation Quantization
Waveform Feature Vectors Symbols

e Signal representation produces feature vector sequence
e Multi-dimensional sequence can be processed by:

— Methods that directly model continuous space

— Quantizing and modelling of discrete symbols
e Main advantages and disadvantages of quantization:

— Reduced storage and computation costs

— Potential loss of information due to quantization
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Vector Quantization (VQ)

e Used in signal compression, speech and image coding

e More efficient information transmission than scalar quantization
(can achieve less that 1 bit/parameter)

e Used for discrete acoustic modelling since early 1980s
e Based on standard clustering algorithms:

- Individual cluster centroids are called codewords

— Set of cluster centroids is called a codebook

- Basic VQ is K-means clustering

— Binary VQ is a form of top-down clustering
(used for efficient quantization)
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VQ & Clustering

e Clustering is an example of unsupervised learning
— Number and form of classes {C;} unknown
— Available data samples {x;} are unlabeled

— Useful for discovery of data structure before classification or
tuning or adaptation of classifiers

e Results strongly depend on the clustering algorithm
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Acoustic Modelling Example
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Clustering Issues

e What defines a cluster?
— Is there a prototype representing each cluster?
e What defines membership in a cluster?
— What is the distance metric, d(x, y)?
e How many clusters are there?
- Is the number of clusters picked before clustering?
e How well do the clusters represent unseen data?

— How is a new data point assigned to a cluster?
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K-Means Clustering

e Used to group data into K clusters, {Cy,..., Ck}
e Each cluster is represented by mean of assigned data
e Iterative algorithm converges to a local optimum:
— Select K initial cluster means, {uy,..., ux}
— lterate until stopping criterion is satisfied:
1. Assign each data sample to the closest cluster
xeC;, dxpj)<dxu;), Vi#j
2. Update K means from assigned samples
ui=EX), xeC;, 1<i<K

e Nearest neighbor quantizer used for unseen data
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K-Means Example: K=3

e Random selection of 3 data samples for initial means

e Euclidean distance metric between means and samples
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K-Means Properties

e Usually used with a Euclidean distance metric
d(x, p;) = [1x — pill* = (x— pp)'(x — py)
e The total distortion, D, is the sum of squared error

K
D=5 S lIx-pl?

=1 xeC;

e D decreases between nt" and n + 15t iteration
Dn+1) <D(n)

e Also known as Isodata, or generalized Lloyd algorithm

e Similarities with Expectation-Maximization (EM) algorithm for
learning parameters from unlabeled data
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K-Means Clustering: Initialization

e K-means converges to a local optimum
— Global optimum is not guaranteed

— Initial choices can influence final result
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e Initial K-means can be chosen randomly
— Clustering can be repeated multiple times

e Hierarchical strategies often used to seed clusters
— Top-down (divisive) (e.g., binary VQ)

— Bottom-up (agglomerative)
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K-Means Clustering: Stopping Criterion

Many criterion can be used to terminate K-means :

e No changes in sample assignments
e Maximum number of iterations exceeded

e Change in total distortion, D, falls below a threshold

Dn+1)
1 - D) <T
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Acoustic Clustering Example

e 12 clusters, seeded with agglomerative clustering

e Spectral representation based on auditory-model
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Clustering Issues: Number of Clusters

e In general, the number of clusters is unknown
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e Dependent on clustering criterion, space, computation or
distortion requirements, or on recognition metric
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Clustering Issues: Clustering Criterion

The criterion used to partition data into clusters plays a strong role
in determining the final results
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Clustering Issues: Distance Metrics

e A distance metric usually has the properties:
1. 0<d(x,y) <o

.dxy)=0iff x=y

. d(x,y)=d(y, X)

. dx,y)<d(x,z)+d(y, z)

or A W DN

. d(xX+2z y+2z)=d(x, y) (invariant)

e In practice, distance metrics may not obey some of these
properties but are a measure of dissimilarity
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Clustering Issues: Distance Metrics

Distance metrics strongly influence cluster shapes:
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e Normalized dot-product: 4
x| wll

e Euclidean: ||x— ;| = (x— ;) (x— ;)
e Weighted Euclidean: (x—u;))W(x—pu;) (e.g., W=X1)
e Minimum distance (chain): min d(x, x;), Xx;eC;

e Representation specific...
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Clustering Issues: Impact of Scaling

Scaling feature vector dimensions can significantly impact
clustering results
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Scaling can be used to normalize dimensions so a simple distance
metric is a reasonable criterion for similarity
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Clustering Issues: Training and Test Data

e Training data performance can be arbitrarily good e.g.,

lim @K =0

_)oo

e Independent test data needed to measure performance

— Performance can be measured by distortion, D, or some more
relevant speech recognition metric

— Robust training will degrade minimally during testing
— Good training data closely matches test conditions

e Development data are often used for refinements, since through
iterative testing they can implicitly become a form of training data
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Alternative Evaluation Criterion:
LPC VQ Example
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Hierarchical Clustering

e Clusters data into a hierarchical class structure

e Top-down (divisive) or bottom-up (agglomerative)

e Often based on stepwise-optimal, or greedy, formulation
e Hierarchical structure useful for hypothesizing classes

e Used to seed clustering algorithms such as K-means
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Divisive Clustering
e Creates hierarchy by successively splitting clusters into smaller
groups

e On each iteration, one or more of the existing clusters are split
apart to form new clusters

e The process repeats until a stopping criterion is met

e Divisive techniques can incorporate pruning and merging
heuristics which can improve the final result
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Example of Non-Uniform Divisive Clustering
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Example of Uniform Divisive Clustering

° 3 °
ey, Yt Wonese
O o’::g“:.: :‘§i:.'. O:Oat:;’ o
O ° .’.0 ®ee

] .°. h.:“ .!;::::o . ..::
e
(= “'

6.345 Automatic Speech Recognition Vector Quantization & Clustering 25



Divisive Clustering Issues

e Initialization of new clusters
— Random selection from cluster samples
— Selection of member samples far from center
— Perturb dimension of maximum variance
— Perturb all dimensions slightly
e Uniform or non-uniform tree structures
e Cluster pruning (due to poor expansion)
e Cluster assignment (distance metric)
e Stopping criterion
— Rate of distortion decrease

— Cannot increase cluster size
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Divisive Clustering Example: Binary VQ

e Often used to create M = 258 size codebook
(B bit codebook, codebook size M)

e Uniform binary divisive clustering used

e On each iteration each cluster is divided in two

pi = pi(l +¢€)

Mi =Hi(l —€)

e K-means used to determine cluster centroids
e Also known as LBG (Linde, Buzo, Gray) algorithm

e A more efficient version does K-means only within each binary
split, and retains tree for efficient lookup
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Agglomerative Clustering

e Structures N samples or seed clusters into a hierarchy

e On each iteration, the two most similar clusters are merged
together to form a new cluster

e After N —1 iterations, the hierarchy is complete
e Structure displayed in the form of a dendrogram

e By keeping track of the similarity score when new clusters are
created, the dendrogram can often yield insights into the natural
grouping of the data
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Dendrogram Example (One Dimension)
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Agglomerative Clustering Issues

e Measuring distances between clusters C; and C; with respective
number of tokens n; and n;

— Average distance:

- Maximum distance (compact): max d(x;, X;)
i,J

— Minimum distance (chain): min d(x;, X;)
i,J

— Distance between two representative vectors of each cluster
such as their means: d(u;, 4;)
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Stepwise-Optimal Clustering

e Common to minimize increase in total distortion on each merging
iteration: stepwise-optimal or greedy

e On each iteration, merge the two clusters which produce the
smallest increase in distortion

e Distance metric for minimizing distortion, D, is:

ninN;
\/ ||y = 5|

I’I,'+l’1j

e Tends to combine small clusters with large clusters before
merging clusters of similar sizes
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Clustering for Segmentation
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Speaker Clustering

e 23 female and 53 male speakers from TIMIT corpus
e Vector based on F1 and F2 averages for 9 vowels

e Distance d(C;, Cj) is average of distances between members
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Velar Stop Allophones
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Velar Stop Allophones (con’t)
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keep.wav
cot.wav
quick.wav
http://ocw.mit.edu/ans7870/6.345/s03/keep.wav
http://ocw.mit.edu/ans7870/6.345/s03/cot.wav
http://ocw.mit.edu/ans7870/6.345/s03/quick.wav

Acoustic-Phonetic Hierarchy

Clustering of phonetic distributions across 12 clusters
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Word Clustering
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VQ Applications

e Usually used to reduce computation
e Can be used alone for classification

e Used in dynamic time warping (DTW) and discrete hidden Markov
models (HMMs)

e Multiple codebooks are used when spaces are statistically
independent (product codebooks)

e Matrix codebooks are sometimes used to capture correlation
between succesive frames

e Used for semi-parametric density estimation
(e.g., semi-continuous mixtures)
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