Pattern Classification

- Introduction
- Parametric classifiers
- Semi-parametric classifiers
- Dimensionality reduction
- Significance testing

Pattern Classification

Goal: To classify objects (or patterns) into categories (or classes)

Types of Problems:

- 1. Supervised: Classes are known beforehand, and data samples of each class are available
- 2. *Unsupervised:* Classes (and/or number of classes) are not known beforehand, and must be inferred from data

Probability Basics

• Discrete probability mass function (PMF): $P(\omega_i)$

$$\sum_{i} P(\omega_i) = 1$$

• Continuous probability density function (PDF): p(x)

$$\int p(x)dx = 1$$

• Expected value: E(x)

$$E(x) = \int x p(x) dx$$

Kullback-Liebler Distance

• Can be used to compute a distance between two probability mass distributions, $P(z_i)$, and $Q(z_i)$

$$D(P \parallel Q) = \sum_{i} P(z_i) \log \frac{P(z_i)}{Q(z_i)} \ge 0$$

• Makes use of inequality $\log x \le x - 1$

$$\sum_{i} P(z_i) \log \frac{Q(z_i)}{P(z_i)} \le \sum_{i} P(z_i) (\frac{Q(z_i)}{P(z_i)} - 1) = \sum_{i} Q(z_i) - P(z_i) = 0$$

- Known as *relative entropy* in information theory
- The *divergence* of $P(z_i)$ and $Q(z_i)$ is the symmetric sum

$$D(P \parallel Q) + D(Q \parallel P)$$

Theorem

Define:

 $\{\omega_i\}$ a set of M mutually exclusive classes

 $P(\omega_i)$ a priori probability for class ω_i

 $p(\mathbf{x}|\omega_i)$ PDF for feature vector \mathbf{x} in class ω_i

 $P(\omega_i|\mathbf{x})$ a posteriori probability of ω_i given \mathbf{x}

From Bayes Rule: $P(\omega_i|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_i)P(\omega_i)}{p(\mathbf{x})}$ where $p(\mathbf{x}) = \sum_{i=1}^{M} p(\mathbf{x}|\omega_i)P(\omega_i)$

where
$$p(\mathbf{x}) = \sum_{i=1}^{M} p(\mathbf{x}|\omega_i)P(\omega_i)$$

Bayes Decision Theory

• The probability of making an error given **x** is:

$$P(error|\mathbf{x}) = 1 - P(\omega_i|\mathbf{x})$$
 if decide class ω_i

• To minimize $P(error|\mathbf{x})$ (and P(error)):

Choose
$$\omega_i$$
 if $mathP(\omega_i|\mathbf{x}) > P(\omega_j|\mathbf{x})$ $\forall j \neq i$

For a two class problem this decision rule means:

Choose
$$\omega_1$$
 if $\frac{p(\mathbf{x}|\omega_1)P(\omega_1)}{p(\mathbf{x})} > \frac{p(\mathbf{x}|\omega_2)P(\omega_2)}{p(\mathbf{x})}$; else ω_2

This rule can be expressed as a likelihood ratio:

Choose
$$\omega_1$$
 if $\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \frac{P(\omega_2)}{P(\omega_1)}$; else choose ω_2

Bayes Risk

- Define cost function λ_{ij} and conditional risk $R(\omega_i|\mathbf{x})$:
 - λ_{ij} is cost of classifying ${m x}$ as ω_i when it is really ω_j
 - $R(\omega_i|\mathbf{x})$ is the risk for classifying \mathbf{x} as class ω_i

$$R(\omega_i|\mathbf{x}) = \sum_{j=1}^{M} \lambda_{ij} P(\omega_j|\mathbf{x})$$

• Bayes risk is the minimum risk which can be achieved:

Choose
$$\omega_i$$
 if $R(\omega_i|\mathbf{x}) < R(\omega_j|\mathbf{x})$ $\forall j \neq i$

- Bayes risk corresponds to minimum $P(error|\mathbf{x})$ when
 - All errors have equal cost $(\lambda_{ij} = 1, i \neq j)$
 - There is no cost for being correct ($\lambda_{ii} = 0$)

$$R(\omega_i|\mathbf{x}) = \sum_{j \neq i} P(\omega_j|\mathbf{x}) = 1 - P(\omega_i|\mathbf{x})$$

Discriminant Functions

- Alternative formulation of Bayes decision rule
- Define a discriminant function, $g_i(\mathbf{x})$, for each class ω_i

Choose
$$\omega_i$$
 if $g_i(\mathbf{x}) > g_j(\mathbf{x})$ $\forall j \neq i$

• Functions yielding identical classification results:

```
g_i(\mathbf{x}) = P(\omega_i|\mathbf{x})
= p(\mathbf{x}|\omega_i)P(\omega_i)
= \log p(\mathbf{x}|\omega_i) + \log P(\omega_i)
```

- Choice of function impacts computation costs
- Discriminant functions partition feature space into decision regions, separated by decision boundaries

Density Estimation

- Used to estimate the underlying PDF $p(\mathbf{x}|\omega_i)$
- Parametric methods:
 - Assume a specific functional form for the PDF
 - Optimize PDF parameters to fit data
- Non-parametric methods:
 - Determine the form of the PDF from the data
 - Grow parameter set size with the amount of data
- Semi-parametric methods:
 - Use a general class of functional forms for the PDF
 - Can vary parameter set independently from data
 - Use unsupervised methods to estimate parameters

Parametric Classifiers

- Gaussian distributions
- Maximum likelihood (ML) parameter estimation
- Multivariate Gaussians
- Gaussian classifiers

Gaussian Distributions

 Gaussian PDF's are reasonable when a feature vector can be viewed as perturbation around a reference

- Simple estimation procedures for model parameters
- Classification often reduced to simple distance metrics
- Gaussian distributions also called Normal

Gaussian Distributions: One Dimension

One-dimensional Gaussian PDF's can be expressed as:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \sim N(\mu, \sigma^2)$$

The PDF is centered around the mean

$$\mu = E(x) = \int x p(x) dx$$

The spread of the PDF is determined by the variance

$$\sigma^2 = E((x - \mu)^2) = \int (x - \mu)^2 p(x) dx$$

Maximum Likelihood Parameter Estimation

• Maximum likelihood parameter estimation determines an estimate $\hat{\theta}$ for parameter θ by maximizing the likelihood $L(\theta)$ of observing data $X = \{x_1, ..., x_n\}$

$$\hat{\theta} = \arg \max_{\theta} L(\theta)$$

• Assuming independent, identically distributed data

$$L(\theta) = p(X|\theta) = p(x_1, \dots, x_n|\theta) = \prod_{i=1}^n p(x_i|\theta)$$

ML solutions can often be obtained via the derivative

$$\frac{\partial}{\partial \theta} L(\theta) = 0$$

• For Gaussian distributions $\log L(\theta)$ is easier to solve

Gaussian ML Estimation: One Dimension

• The maximum likelihood estimate for μ is given by:

$$L(\mu) = \prod_{i=1}^{n} p(x_i|\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

$$\log L(\mu) = -\frac{1}{2\sigma^2} \sum_{i} (x_i - \mu)^2 - n \log \sqrt{2\pi}\sigma$$

$$\frac{\partial \log L(\mu)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i} (x_i - \mu) = 0$$

$$\hat{\mu} = \frac{1}{n} \sum_{i} x_i$$

ullet The maximum likelihood estimate for σ is given by:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_i (x_i - \hat{\mu})^2$$

Gaussian ML Estimation: One Dimension

[s] Duration (1000 utterances, 100 speakers)

ML Estimation: Alternative Distributions

[s] Duration: Gamma Distribution

ML Estimation: Alternative Distributions

[s] Log Duration: Normal Distribution

Gaussian Distributions: Multiple Dimensions

A multi-dimensional Gaussian PDF can be expressed as:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})} \sim N(\boldsymbol{\mu}, \mathbf{\Sigma})$$

- *d* is the number of dimensions
- $\mathbf{x} = \{x_1, \dots, x_d\}$ is the input vector
- $\mu = E(\mathbf{x}) = \{\mu_1, \dots, \mu_d\}$ is the mean vector
- $\Sigma = E((\mathbf{x} \boldsymbol{\mu})(\mathbf{x} \boldsymbol{\mu})^t)$ is the covariance matrix with elements σ_{ij} , inverse Σ^{-1} , and determinant $|\Sigma|$
- $\sigma_{ij} = \sigma_{ji} = E((x_i \mu_i)(x_j \mu_j)) = E(x_i x_j) \mu_i \mu_j$

Gaussian Distributions: Multi-Dimensional Properties

- If the i^{th} and j^{th} dimensions are statistically or linearly independent then $E(x_ix_i) = E(x_i)E(x_i)$ and $\sigma_{ii} = 0$
- If all dimensions are statistically or linearly independent, then $\sigma_{ij} = 0 \quad \forall i \neq j \text{ and } \Sigma \text{ has non-zero elements only on the diagonal}$
- If the underlying density is Gaussian and Σ is a diagonal matrix, then the dimensions are statistically independent and

$$p(\mathbf{x}) = \prod_{i=1}^{d} p(x_i) \qquad p(x_i) \sim N(\mu_i, \sigma_{ii}) \qquad \sigma_{ii} = \sigma_i^2$$

Diagonal Covariance Matrix: $\Sigma = \sigma^2 I$

$$\mathbf{\Sigma} = \left| \begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right|$$

3-Dimensional PDF

PDF Contour

Diagonal Covariance Matrix: $\sigma_{ij} = 0$ $\forall i \neq j$

$$\mathbf{\Sigma} = \left| \begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array} \right|$$

3-Dimensional PDF

PDF Contour

General Covariance Matrix: $\sigma_{ij} \neq 0$

$$\mathbf{\Sigma} = \left| \begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right|$$

3-Dimensional PDF

PDF Contour

Multivariate ML Estimation

• The ML estimates for parameters $\theta = \{\theta_1, ..., \theta_l\}$ are determined by maximizing the joint likelihood $L(\theta)$ of a set of i.i.d. data $\mathcal{X} = \{\mathbf{x}_1, ..., \mathbf{x}_n\}$

$$L(\boldsymbol{\theta}) = p(\boldsymbol{x}|\boldsymbol{\theta}) = p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n|\boldsymbol{\theta}) = \prod_{i=1}^n p(\boldsymbol{x}_i|\boldsymbol{\theta})$$

• To find $\hat{\boldsymbol{\theta}}$ we solve $\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = \boldsymbol{0}$, or $\nabla_{\boldsymbol{\theta}} \log L(\boldsymbol{\theta}) = \boldsymbol{0}$

$$\nabla_{\boldsymbol{\theta}} = \{ \frac{\partial}{\partial \theta_1}, \cdots, \frac{\partial}{\partial \theta_l} \}$$

• The ML estimates of μ and Σ are:

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i} \boldsymbol{x}_{i} \qquad \hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i} (\boldsymbol{x}_{i} - \hat{\boldsymbol{\mu}}) (\boldsymbol{x}_{i} - \hat{\boldsymbol{\mu}})^{t}$$

Multivariate Gaussian Classifier

$$p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

- Requires a mean vector μ_i , and a covariance matrix Σ_i for each of M classes $\{\omega_1, \dots, \omega_M\}$
- The minimum error discriminant functions are of form:

$$g_i(\mathbf{x}) = \log P(\omega_i | \mathbf{x}) = \log p(\mathbf{x} | \omega_i) + \log P(\omega_i)$$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2}\log 2\pi - \frac{1}{2}\log |\boldsymbol{\Sigma}_i| + \log P(\omega_i)$$

 Classification can be reduced to simple distance metrics for many situations

Gaussian Classifier: $\Sigma_i = \sigma^2 I$

- Each class has the same covariance structure: statistically independent dimensions with variance σ^2
- The equivalent discriminant functions are:

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \boldsymbol{\mu}_i\|^2}{2\sigma^2} + \log P(\omega_i)$$

- If each class is equally likely, this is a minimum distance classifier, a form of template matching
- The discriminant functions can be replaced by the following linear expression:

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + \omega_{i0}$$
 where $\mathbf{w}_i = \frac{1}{\sigma^2} \boldsymbol{\mu}_i$ and $\omega_{i0} = -\frac{1}{2\sigma^2} \boldsymbol{\mu}_i^t \boldsymbol{\mu}_i + \log P(\omega_i)$

Gaussian Classifier: $\Sigma_i = \sigma^2 I$

For distributions with a common covariance structure the decision regions are hyper-planes.

Gaussian Classifier: $\Sigma_i = \Sigma$

- Each class has the same covariance structure Σ
- The equivalent discriminant functions are:

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \log P(\omega_i)$$

- If each class is equally likely, the minimum error decision rule is the squared Mahalanobis distance
- The discriminant functions remain linear expressions:

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + \omega_{i0}$$

where

$$\mathbf{w}_i = \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_i$$
$$\omega_{i0} = -\frac{1}{2} \boldsymbol{\mu}_i^t \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_i + \log P(\omega_i)$$

Gaussian Classifier: Σ_i Arbitrary

- Each class has a different covariance structure Σ_i
- The equivalent discriminant functions are:

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2}\log|\boldsymbol{\Sigma}_i| + \log P(\omega_i)$$

• The discriminant functions are inherently quadratic:

$$g_i(\mathbf{x}) = \mathbf{x}^t \, \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^t \mathbf{x} + \omega_{i0}$$
 where
$$\mathbf{W}_i = -\frac{1}{2} \mathbf{\Sigma}_i^{-1}$$

$$\mathbf{w}_i = \mathbf{\Sigma}_i^{-1} \boldsymbol{\mu}_i$$

$$\omega_{i0} = -\frac{1}{2} \boldsymbol{\mu}_i^t \mathbf{\Sigma}_i^{-1} \boldsymbol{\mu}_i - \frac{1}{2} \log |\mathbf{\Sigma}_i| + \log P(\omega_i)$$

Gaussian Classifier: Σ_i Arbitrary

For distributions with arbitrary covariance structures the decision regions are defined by hyper-spheres.

3 Class Classification (Atal & Rabiner, 1976)

- Distinguish between silence, unvoiced, and voiced sounds
- Use 5 features:
 - Zero crossing count
 - Log energy
 - Normalized first autocorrelation coefficient
 - First predictor coefficient, and
 - Normalized prediction error
- Multivariate Gaussian classifier, ML estimation
- Decision by squared Mahalanobis distance
- Trained on four speakers (2 sentences/speaker), tested on 2 speakers (1 sentence/speaker)

Maximum A Posteriori Parameter Estimation

- Bayesian estimation approaches assume the form of the PDF $p(x|\theta)$ is known, but the value of θ is not
- Knowledge of θ is contained in:
 - An initial *a priori* PDF $p(\theta)$
 - A set of i.i.d. data $X = \{x_1, \dots, x_n\}$
- The desired PDF for x is of the form

$$p(x|X) = \int p(x,\theta|X)d\theta = \int p(x|\theta)p(\theta|X)d\theta$$

• The value $\hat{\theta}$ that maximizes $p(\theta|X)$ is called the maximum a posteriori (MAP) estimate of θ

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)} = \alpha \prod_{i=1}^{n} p(x_i|\theta)p(\theta)$$

Gaussian MAP Estimation: One Dimension

• For a Gaussian distribution with unknown mean μ :

$$p(x|\mu) \sim N(\mu, \sigma^2)$$
 $p(\mu) \sim N(\mu_0, \sigma_0^2)$

• MAP estimates of μ and x are given by:

$$p(\mu|X) = \alpha \prod_{i=1}^{n} p(x_{i}|\mu)p(\mu) \sim N(\mu_{n}, \sigma_{n}^{2})$$

$$p(x|X) = \int p(x|\mu)p(\mu|X)d\mu \sim N(\mu_{n}, \sigma^{2} + \sigma_{n}^{2})$$
where
$$\mu_{n} = \frac{n\sigma_{0}^{2}}{n\sigma_{0}^{2} + \sigma^{2}}\hat{\mu} + \frac{\sigma^{2}}{n\sigma_{0}^{2} + \sigma^{2}}\mu_{0} \qquad \sigma_{n}^{2} = \frac{\sigma_{0}^{2}\sigma^{2}}{n\sigma_{0}^{2} + \sigma^{2}}$$

• As n increases, $p(\mu|X)$ converges to $\hat{\mu}$, and p(x|X) converges to the ML estimate $\sim N(\hat{\mu}, \sigma^2)$

- Huang, Acero, and Hon, *Spoken Language Processing*, Prentice-Hall, 2001.
- Duda, Hart and Stork, Pattern Classification, John Wiley & Sons, 2001.
- Atal and Rabiner, A Pattern Recognition Approach to Voiced-Unvoiced-Silence Classification with Applications to Speech Recognition, *IEEE Trans ASSP*, 24(3), 1976.