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Dynamic Time Warping & Search

e Dynamic time warping
e Search
— Graph search algorithms

— Dynamic programming algorithms
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Word-Based Template Matching

Feature Pattern Decision
Measurement Similarity Rule
Spoken T Output
Word Word
Word
Reference
Templates

e Whole word representation:
— No explicit concept of sub-word units (e.g., phones)
— No across-word sharing

e Used for both isolated- and connected-word recognition

e Popularin late 1970s to mid 1980s
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Template Matching Mechanism

e Test pattern, T, and reference patterns, {Ry,..., Ry}, are
represented by sequences of feature measurements

e Pattern similarity is determined by aligning test pattern, T, with
reference pattern, R,, with distortion D(T, R,)

e Decision rule chooses reference pattern, R*, with smallest
alignment distortion D(T, R*)

R* = arg mvin D(T, R,)

e Dynamic time warping (DTW) is used to compute the best possible
alignment warp, ¢,, between T and R,,, and the associated
distortion D(T, R,)
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Digit Alignment Examples
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Dynamic Time Warping (DTW)

e Objective: an optimal alignment between variable length
sequences T ={t;,..., ty} and R={ry,..., ry}

e The overall distortion D(T, R) is based on a sum of local distances
between elements d(t;, r;)

e A particular alignment warp, ¢, aligns T and R via a
point-to-point mapping, ¢ = (¢, P,), of length Ky

by (k) = Fp () 1 <Kk<Kg

e The optimal alignment minimizes overall distortion

D(T, R) = m(gn Dy(T, R)
1 Ke
Dy(T, R) = 37— > d(tg,k), ¥p,0)M
¢ k=1
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DTW Issues

e Endpoint constraints:

$i(1)=(1)=1 ¢(K)=N ¢, (K)=M

e Monotonicity:

be(k+1)>pi(k) Ppp(k+1)>py(k)

e Path weights, my, can influence shape of optimal path

e Path normalization factor, My, allows comparison between
different warps (e.g., with different lengths)

K¢
Mg = Z Mmp
k=1
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DTW Issues: Local Continuity
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Local constraints determine alignment flexibility
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M‘ITssues: Global Constraints

slope=2
(1M) / (N.M)
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Legal range
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slope=2

Local constraints exclude portions of search space
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Computing DTW Alignment
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Graph Representations of Search Space

e Search spaces can be represented as directed graphs

E—EO—0O—=H—0

e Paths through a graph can be represented with a tree
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Graph Search Algorithms

e Iterative methods using a queue to store partial paths

— On each iteration the top partial path is removed from the
queue and is extended one level

— New extensions are put back into the queue

— Search is complete when goal is reached
e Depth of queue is potentially unbounded
e Weighted graphs can be searched to find the best path
e Admissible algorithms guarantee finding the best path

e Many speech-based search problems can be configured to
proceed time-synchronously

6.345 Automatic Speech Recognition Dynamic Time Warping & Search 13



Depth First Search

e Searches space by pursuing one path at a time

e Path extensions are put on top of queue

e Queue is not reordered or pruned

e Not well suited for spaces with long dead-end paths

e Not generally used to find the best path
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Depth First Search Example
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Breadth First Search

e Searches space by pursuing all paths in parallel

e Path extensions are put on bottom of queue

e Queue is not reordered or pruned

e Queue can grow rapidly in spaces with many paths
e Not generally used to find the best path

e Can be made much more effective with pruning
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Best First Search

e Used to search a weighted graph

e Uses greedy or step-wise optimal criterion, whereby each iteration
expands the current best path

e On each iteration, the queue is resorted according to the
cumulative score of each partial path

e If path scores exhibit monotonic behavior, (e.g., d(t;, r;) > 0),
search can terminate when a complete path has a better score
than all active partial paths
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Ml;ﬁepresentation (with node scores)
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Ml;ﬁepresentation (with cumulative scores)
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Pruning Partial Paths

e Both greedy and dynamic programming algorithms can take
advantage of optimal substructure:

— Let ¢ (i, j) be the best path between nodes i and j
— If k is a node in ¢(i, j):

(i, j) =1, k), p(k, j)}

— Let @(i, j) be the cost of (i, j)

@(i, j) = mkin(cp(i, k) + @(k, j))

e Solutions to subproblems need only be computed once

e Sub-optimal partial paths can be discarded while maintaining
admissibility of search
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Estimating Future Scores

e Partial path scores, @(1, i), can be augmented with future
estimates, @(i), of the remaining cost

Pg¢ = @(1, i)+ @(i)

e If @(i)is an underestimate of the remaining cost, additional paths
can be pruned while maintaining admissibility of search

e A*search uses
— Best-first search strategy
— Pruning

— Future estimates
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N-Best Search

e Used to compute top N paths
— Can be re-scored by more sophisticated techniques
— Typically used at the sentence level
e Can use modified A*search to rank paths
— No pruning of partial paths
— Completed paths are removed from queue

— Can use a threshold to prune paths, and still identify
admissibility violations

— Can also be used to produce a graph

e Alternative methods can be used to compute N-best outputs (e.g.,
asynchronous DP)
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Dynamic Programming (DP)

e DP algorithms do not employ a greedy strategy

e DP algorithms typically take advantage of optimal substructure
and overlapping subproblems by arranging search to solve each
subproblem only once

e Can be implemented efficiently:

— Node j retains only best path cost of all @(i, j)

— Previous best node id needed to recover best path
e Can be time-synchronous or asynchronous

e DTW and Viterbi are time-synchronous searches and look like
breadth-first with pruning
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M|IeTSynchronous DP Example
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Inadmissible Search Variations

e Can use a beam width to prune current hypotheses
— Beam width can be static or dynamic based on relative score

e Can use an approximation to a lower bound on A*lookahead for
N-best computation

e Search is inadmissible, but may be useful in practice
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