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Problem 1: (24 points) 
During the time interval [0, t], men and women arrive according to independent Poisson 
processes with parameters λ1 and λ2, respectively. With the exception of part (e), just 
provide answers (possibly based on your intuitive understanding)—justifications are not 
required. 

(a) (3 pts.) Let [a, b] be an interval contained in [0, t]. Give a formula for the prob­
ability that the total number of male arrivals during the interval [a, b] is equal 
to 7. 

(b) Out of all the people who arrived during [0, t], we select one at random, with each 
one being equally likely to be selected. 

(i) (3 pts.) Write an expression for the probability that the selected person is 
male. 

(ii) (3 pts.) Suppose that the randomly selected person tells us that he/she ar­
rived at a particular time τ . What is the conditional probability that this 
person is male? 

(iii) (3 pts.) Write an expression (as simple as you can) for the expected time at 
which the selected person arrived. 

(c) (4 pts.) Suppose that 0 < a < b < t. Let N1 be the number of male arrivals 
during [0, b]. Let N2 be the number of female arrivals during [a, t]. What is the 
probability mass function of N1 + N2? 

(d) (4 pts.) Suppose that in (c) above we are told that N1 + N2 = 10. Find the 
conditional variance of N1, given this information. 

(e) (4 pts.) Find a good approximation for the probability of the event 

{the number of arriving men during [0, t] is at least λ1t}, 

when t is large, and justify the approximation. 

Solution: (a) 

e−λ1(b−a) (λ1(b − a))7 

7! 

(b)(i) λ1/(λ1 + λ2) 
(ii) Since the time a person has arrived is independent of whether he was classified into 
male or female, the answer is the same as in (i). 
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(iii) The distribution of a randomly selected arrival is uniform over [0, t]. Its expectation 
is t/2. 
(c) Male and female arrivals are independent processes, and the sum of independent 
Poisson random variables is again Poisson. The answer is Poisson with parameter λ1b+ 
λ2(t − a). 
(d) Since each arrival N1 + N2 independently comes from N1 with probability 

λ1b 
p = ,

λ1b + λ2(t − a) 

the distribution of N1 conditional on N1 +N2 = 10 is binomial with parameters n = 10 
and p. Its variance is 10p(1 − p). �t−1(e) Suppose t is integer. Then, N([0, t)) = i=0 N([i, i + 1)]. The random variables 
N([i, i + 1)) are iid with finite variance of λ1. Then, applying the central limit theorem 
approximation, N([0, t)) ≈ N(λ(t − 1), λ(t − 1)) and the probability that it is above 
its mean is approximately 1/2, by the symmetry of the normal distribution. 

If t is not an integer we can make a similar argument by defining Δt = t/�t�, where 
�t� is the largest integer smaller than t. Then Δt is between 1 and 2, and N([0, t)) = 
�t� 

N([iΔt, (i + 1)Δt)), and the same argument as before applies. i=0 

Problem 2: (23 points)

Consider the discrete-time Markov chain shown in the figure.
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Oscar goes for a run each morning. When he leaves his house for his run, he is equally-likely to
go out either the front or the back door; and similarly, when he returns, he is equally likely to
go to either the front or back door. Oscar owns only five pairs of running shoes which he takes
off immediately after the run at whichever door he happens to be. If there are no shoes at the
door from which he leaves to go running, he runs barefooted. We are interested in determining
the long-run proportion of time that he runs barefooted.

(a) Set the scenario up as a Markov chain, specifying the states and transition probabilities.
(b) Determine the long-run proportion of time Oscar runs barefooted.
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(a) What are the recurrent classes? Are they aperiodic?
(b) For X0 = 2, compute the probabilities that the Markov chain eventually enters each of the

recurrent classes.
(c) Repeat (b) for X0 = 1, 3, 4, 5, 6.
(d) For all pairs of states (i, j) compute limn→∞ P(Xn = j|X0 = i).
(e) Find the expected value and variance of the number of transitions N up to and including

the last transition out of state 2 given that the Markov chain starts out in state 2.
(f) Conditional on eventually entering the recurrent class 5,6, find the expected value of the

number of transitions M up to an including the transition into the recurrent class given that
the Markov chain starts out in state 2.

868. 6_3_markov_steady_2_12.tex

For any finite Markov chain, we define

rij(n) ≡ PXn = j|X0 = i.

We define πj as the steady state probability of being in state j, provided rij(n) converges as
n → ∞ and the value to which it converges does not depend on the starting state
i. The arrows correspond to positive single-step transition probabilities. Determine if each
statement is true or false for each of the chains below.
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(a) (3 pts.) What are the recurrent classes? 

(b) (5 pts.) Assume that X0 = 2. For each recurrent class, compute the probability 
that the process eventually enters this class. 

(c) (5 pts.) Find limn→∞ P(Xn = 5 | X0 = 2). 
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(d) (5 pts.)	 Given that X0 = 2, find the expected time until a recurrent state is

reached.


(e) (5 pts.) Find the probability P(Xn−1 = 5 | Xn = 5), in the limit of large n. 

Solution: 

(a) The recurrent classes are {1} and {5, 6}. 

(b) Let ai denote the probability of absorption into State 1 starting from state i. Then, 
it is clear that a1 = 1 and a3 = 0. We also have 

1 1 1 1 1 
a2 = a1 + a2 + a3 = + a2.3 6 2 3 6 

It follows that a2 = 2/5. This also implies that the probability of absorption in the 
class {5, 6} starting from state 2 is 3/5. 

(c) With probability 3/5 the chain enters the recurrent class {5, 6}. Once in the class, 
P (Xn = 5) will approach π5 of the Markov chain composed only of states 5 and 
6, which we can determine with the aid of the birth-death equation π5(3/4) = 
π6(1/2), which yield π5 = 2/5. The final answer is (3/5) (2/5) = 6/25.· 

(d) Let ti be the expected time to enter a recurrent class conditioned on being at state i. 
Then the equations are: 

t1 = t5 = t6 = 0 
1 1 1 

t2 = 1 + t1 + t2 + t33 6 2 
1 1 

t3 = 1 + t4 + t52 2 
3 1 

t4 = 1 + t3 + t64 4 

which have the solution of t2 = 66/25. 

(e) 

lim P (Xn−1 = 5 Xn = 5) = lim 
P (Xn−1 = 5)P (Xn = 5|Xn−1 = 5) 

= 
π5(1/4) 

= 
n 

|
n P (Xn = 5)	 π5 

Problem 3: (13 points)

The number of people that enter a pizzeria in a period of 15 minutes is a (nonnegative

integer) random variable K with known moment generating function MK (s) = E[esK ].

Each person who comes in buys a pizza. There are n types of pizzas, and each person is

equally likely to choose any type of pizza, independently of what anyone else chooses.
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Give a formula, in terms of MK ( ), for the expected number of different types of pizzas ·
ordered. 

Solution: Let D be the number of types of pizza the chef has to prepare, and let M be 
the number of people to enter the pizzeria. Let X1, . . . , Xn be the respective indicator 
variables of each pizza. Thus if at least one person orders pizza type i, then Xi = 1, 
otherwise Xi = 0. Note that D = X1 + + Xn. Thus we have: · · · 

E[D] = E[E[D|M ]] 
= E[E[X1 + · · · + Xn|M ]] 
= n · E[E[Xi�|M ] �M � n − 1 
= n · E 1 − 

n � � �M � 
= n − n E 

n − 1 · 
n 

sM ](letting s = log((n − 1)/n)) = n − n · E[e � � 
= n − n MK log((n − 1)/n) .· 

Problem 4: (13 points)

Let S be the set of arrival times in a Poisson process on R (i.e., a process that has

been running forever), with rate λ. Each arrival time in S is displaced by a random

amount. The random displacement associated with each element of S is a random

variable that takes values in a finite set. We assume that the random displacements

associated with different arrivals are independent and identically distributed. Show that

the resulting process (i.e., the process whose arrival times are the displaced points) is a

Poisson process with rate λ. (We expect a proof consisting of a verbal argument, using

known properties of Poisson processes; formulas are not needed.)


Solution: Since each point is perturbed independently of all the others, we can con­

sider the perturbation as follows: Let the perturbation values be {v1, . . . , vm}, which

occur with respective probabilities pi. Then consider splitting our d-dimensional Pois­

son process according to the probabilities pi, into processes N1, N2, . . . , Nm. By the

results on splitting Poisson processes, these will be independent, and process Ni will

be a Poisson process on R of rate λpi Now shift all the points split into the ith process,

Ni, by the same value vi. Clearly this translated version of Ni is a Poisson process,

and it is independent of all the other Poisson processes, and hence independent of the

translated versions as well. Therefore, once we merge the shifted processes, again we

have a Poisson process of the same rate.


Problem 5: (10 points)

Let {Xn} be a sequence of nonnegative random variables such that limn→∞ Xn = 0,

almost surely. For the following statements, answer (together with a brief justification)

whether it is: (i) always true, (ii) always false; (iii) sometimes true and sometimes false,


(a) (5 pts.) limn→∞ P(Xn > 0) = 0. 
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(b) (5 pts.) For every � > 0, limn→∞ P(Xn > �) = 0. 

Solution: part (a) is sometimes true, sometimes false. Consider Xn = 1/n with prob­
ability 1, in which case (a) is false; and consider Xn = 0 with probability 1, in which 
case (a) is true. 

Part (b) is always true because P (Xn > �) ≤ P (|Xn − 0| > �), and since con­
vergence almost everywhere implies convergence in probability, the last expression ap­
proaches 0 as n goes to infinity. 

Problem 6: (17 points)

Let {Xn} be a sequence of random variables defined on the same probability space.


(a) (4 pts.) Suppose that limn→∞ E[|Xn|] = 0. Show that Xn converges to zero, in 
probability. 

(b) (5 pts.) Suppose that Xn converges to zero, in probability, and that for some 
constant c, we have |Xn| ≤ c, for all n, with probability 1. Show that 

lim E[|Xn|] = 0. 
n→∞ 

(c) Suppose that each Xn can only take the values 0 and 1 and, that P(Xn = 1) = 
1/n. 

(i) (4 pts.) Given an example in which we have almost sure convergence of Xn 

to 0. 

(ii) (4 pts.) Given an example in which we do not have almost sure convergence 
of Xn to 0. 

Solution: For part (a), observe that Markov’s inequality implies 

E[ Xn ]
P (|Xn − 0| ≥ �) ≤ |

� 
|

, 

so that if E[|Xn|] approaches 0, we have that Xn approaches 0 in probability. 
For part (b), fix � > 0 and define a new random variable Xn

� as follows. We have 
Xn

� = � whenever |Xn| ≤ �, and Xn
� = c whenever |Xn| > �. Then, it is always true 

that |Xn| ≤ X� and therefore n 

E[|Xn|] ≤ E[X� ] = �P (|Xn| ≤ �) + cP (|Xn| > �)n

Taking limits as n goes to infinity, we get 

lim E[ Xn ] ≤ �, 
n 

| |

and since this holds for all � > 0, we get limn E[|Xn|] = 0. 
For part (c).i, we can generate a uniform random variable on [0, 1] and declare that 

Xn = 1 if the outcome is at most 1/n, and 0 otherwise. It immediately follows Xn 
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is binary with P (Xn = 1) = 1/n. Now suppose that the uniform random variable 
generated the value x with x > 0. Then eventually 1/n is smaller than x, and Xn = 0 
after this point. Since the outcome is positive with probability 1 (the probability of 
getting 0 is 0), it follows that Xn approaches 0 almost surely. 

For part (c).ii, we can take Xn to be independent. Since 

∞ ∞ 1 
P (Xn = 1) = = ∞, 

n 
i=1 n=1 

and the events {Xn = 1} are independent, the Borel-Cantelli lemma implies that Xn = 
1 occurs infinitely often with probability 1. It follows that Xn does not converge to 0 
almost surely. 
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