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Whenever asked to explain or justify an answer, a formal proof is not needed, but
just a brief explanation.

Problem 1: (30 points)

Consider the Markov chain shown in the figure. Each time that state ¢ is visited, an
independent random reward is obtained which is a normal random variable with mean
1 and variance 4. More precisely, the reward W,, obtained at time n, has a conditional
PDF (given the past history), which is N (i, 4).

(a) How many invariant distributions are there?

(b) Starting from state 1, what is the probability that the chain eventually visits
state 5?7

(c) Suppose that Xy = 4. Does X,, converge almost surely? In distribution?
(d) Find P(X,, =4 | X,+1 =5, X1 = 4), in the limit of very large n.

(e) Consider the average reward R,, = (W3 + --- + W,,)/n. Conditioned on X, =
3, does RR,, converge almost surely? If yes, to what? (A number or a random
variable?) If not, explain why.

(f) Conditioned on Xy = 3, what is the characteristic function of W7 + W5? (You
do not need to do any algebra to simplify your answer.)




Solution:

(a) There are three independent invariant distributions, one for each recurrent class.
Since any convex combination of these is an invariant distribution, there are in-
finitely many invariant distributions.

(b) The recursion equations are

1 1

P = 3 + 5272
_ 1 n 1
P2 = 3]?2 3]31

from which we get p; = 2/3.

(c) X, does not converge almost surely, but in distribution it converges to the random
variable which is 4 with probability w4 and 5 with probability 75. To compute

these, we can argue
1 2

T4as = T55,

2 3
and with the additional equation 74 + 75 = 1, this gives 7y = 4/7, 75 = 3/7.

(d)

P =4 Xon =5 Xi=d) == 51X =1~ m

(e) Let R be the random variable which is 6 if X7 = 6 and 7 if X; = 7. Then, the
strong law of large numbers implies that R,, converges to R almost surely.

(f) With probability 1/2, W1 +Ws is N (12, 8) and with probability 1/2itis N (14, 8).

So,
b, () = %6#12674{" + leit14674t2.

P(Xn =4, Xnt1 :57|X1 :4) _ (1/2)7['4 72
3



Problem 2: (10 points)

A job takes an exponentially distributed amount of time to be processed, with parameter
. While this job is being processed, new jobs arrive according to an independent
Poisson process, with parameter A. Find the PMF of the number of new jobs that arrive
while the original job is being processed. (Justify your answer.)

Solution: Merge the arrival process and the original job process. The probability that
k new jobs have arrived is the probability that the first £ arrivals in the merged process
come from the arrival process, and the k 4 1’st comes from the job process. So,

B k=012...

P(k new jobs ) = ( pyt

A+



Problem 3: (10 points)

A workstation consists of three machines, My, M>, and M3, each of which will fail
after an amount of time 7; which is an independent exponentially distributed random
variable, with parameter 1. Assume that the times to failure of the different machines
are independent. The workstation fails as soon as both of the following have happened:
(i) Machine M, has failed;

(i1) At least one of the machines M5 and M3 has failed.

(a) Give a mathematical expression for the time of failure of the workstation in terms
of the random variables 7T;.

(b) Find the expected value of the time to failure of the workstation.

Solution: For part a,
Failure time = max (77, min(7s,T3)).

For part b, we have to wait an expected 1 time until M fails. With probability 2/3, M,
fails after M5 or M3, so no more waiting is needed. With probability 1/3, however, M
fails first and we have to wait until an arrival in the merged Ms, M3 process which takes
an expected value of 1/2. So,

7

11
E| Failture ti =14+-==-.
[ Failture time ] +32 5



Problem 4: (10 points)

A fair six-sided die is tossed repeatedly and independently. Let V;(¢) be the number of
times a result of ¢ appears in the first ¢ tosses. We know that the joint PMF of the vector
N(t) = (N1(t), ..., Ng(t)) is multinomial.

(a) Fort > s, find E[Na(t) | N1(s) = k.

(b) Find a and b such that (N;(t) — at)/by/t converges in distribution to a standard
normal.

Solution: For part a, observe that the expected number of 2’s in tosses s + 1,...,t is
(t — s)/6, and by conditioning, we can argue that the expected number of 2s in tosses
1,...,sis (s — k)/5. So the final answer is (t — s)/6 + (s — k) /5.

For part b, we need to apply the central limit theorem. a needs to be the mean of
N;(1),s0a = 1/6. bneeds to be the square root of the variance, b = /1/6 — (1/6)? =

V5
-



Problem 5: (10 points)
Let X be a vector random variable with mean zero and covariance matrix V.

(a) Specify (in terms of V/, and whenever possible) a square matrix U such that the
covariance matrix of U X is the identity. State the conditions needed for this to
be possible.

(b) Is it true that we can always find a matrix U (not necessarily square) so that the
covariance of U X is the identity? Explain briefly.

Solution: We have that the covariance of U X is
Cov(UX)=UXXTU =UVU,

so that if V' is positive definite, we can just pick U = V~/2. Now for V' to be positive
definite, we must have that
alVa #0,

for all a # 0 (since V' is automatically nonnegative definite), which is
E[(a" X)*] #0,

which is the the same as as requiring that a” X is not zero with probability 1. In sum-
mary, the condition for the existence of such a matrix is that the identically-zero random
variable is not a linear combination of the random variables in X.

For part b, observe that its not possible to find such a matrix U if X = 0. On the
other hand, if the vector X contains a random variable which is not identically 0, it is
possible: we can just set U = ezT, where e; is the i’th basis vector, and X is the random
variable thats not identically 0.



Problem 6: (10 points)
Give an example of a sequence {X,, } of r.v.s for which E[X?2] — 0, but X,, does not
converge almost surely to 0.

Solution: Take X, to be 1 with probability 1/n and 0 otherwise. Then, E[X?2] = 1/n
which goes to 0, but X,, = 1 infinitely often with probability 1 from the Borel-Cantelli
lemma, so X,, does not converge to 0 almost everywhere.



Problem 7: (10 points)

Consider a sequence of events {A,,} that satisfy >~ | P(A,) = oco. However, the
events are not independent, so that the Borel-Cantelli lemma does not apply. Instead,
we have the following underlying structure. There is a sequence of independent random
variables {X,,} and a sequence of measurable functions g, : R? — {0, 1} such that
Ap = {9n(Xn, Xns1) = 1}. Show that P(A,, i.0.) = 1.

Solution: At least one of

D P4, Y P(A),

n even n odd

must be infinite. Say it is the sum over even n that is infinite. Then, the events
A27A47 Aﬁa cee

are all independent and by the Borel-Cantelli lemma, infinitely many of them must occur
with probability one.



Problem 8: (10 points)
Let {X,, | n > 1} be a Markov chain on the state space {1, ..., m}, for some integer
m. Assume that this chain has a single recurrent class and no transient states.

(a) Let
M,, = max X;.
i<n
Is {M,,} a Markov chain. If yes, give its one-step transition probabilities, and
identify the transient and recurrent states. If not, explain why (briefly).

(b) LetY, = (M,,X,). Is the process the process {Y,,} a Markov chain? If yes, do
not give a justification but give its one-step transition probabilities, and identify
the transient and recurrent states. If not, explain why.

Solution:

(a) Not a Markov chain. Consider for example a particle at three states, 0, 1, 2, which
are connected as 1 —0 — 2 (i.e. there is a connection between 1 and 0 and between
0 and 2) . The particle jumps to a random neighbor with equal probability. The
probability of transitions to M; = 2 from the history My = 1 is 0, but the
probability of transitions to My = 2 from the history My = 1, M; = 1 is strictly
positive.

(b) Yes, this is a markov chain. The probability of transitioning from (M,4) to
(Ma, j) is py; if one of the following two conditions holds:

L] max(i,j) < Ml and M2 = M1~
® j>M,j= M.

and 0 otherwise. The recurrent state are the states (m,¢),7 = 1,...,m; all other
states are transient.
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