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PROBABILISTIC EXPERIMENTS 

Probability theory is a mathematical framework that allows us to reason about 
phenomena or experiments whose outcome is uncertain. A probabilistic model 
is a mathematical model of a probabilistic experiment that satisfies certain math­
ematical properties (the axioms of probability theory), and which allows us to 
calculate probabilities and to reason about the likely outcomes of the experi­
ment. 

A probabilistic model is defined formally by a triple (Ω, F , P), called a 
probability space, comprised of the following three elements: 

(a) 	 Ω is the sample space, the set of possible outcomes of the experiment. 

(b) 	 F is a σ-field, a collection of subsets of Ω. 

(c) 	 P is a probability measure, a function that assigns a nonnegative probabil­
ity to every set in the σ-field F . 

Our objective is to describe the three elements of a probability space, and 
explore some of their properties. 
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2 SAMPLE SPACE 

The sample space is a set Ω comprised of all the possible outcomes of the ex­
periment. Typical elements of Ω are often denoted by ω, and are called ele­
mentary outcomes, or simply outcomes. The sample space can be finite, e.g., 
Ω = {ω1, . . . , ωn}, countable, e.g., Ω = N, or uncountable, e.g., Ω = R or 
Ω = {0, 1}∞. 

As a practical matter, the elements of Ω must be mutually exclusive and 
collectively exhaustive, in the sense that once the experiment is carried out, there 
is exactly one element of Ω that occurs. 

Examples 

(a) If the experiment consists of a single roll of an ordinary die, the natural sample 
space is the set Ω = {1, 2, . . . , 6}, consisting of 6 elements. The outcome ω = 2 
indicates that the result of the roll was 2. 

(b) If the experiment consists of five consecutive rolls of an ordinary die, the natural 
sample space is the set Ω = {1, 2, . . . , 6}5 . The element ω = (3, 1, 1, 2, 5) is an 
example of a possible outcome. 

(c) If the experiment consists of an infinite number of consecutive rolls of an ordinary 
die, the natural sample space is the set Ω = {1, 2, . . . , 6}∞. In this case, an elemen­
tary outcome is an infinite sequence, e.g., ω = (3, 1, 1, 5, . . .). Such a sample space 
would be appropriate if we intend to roll a die indefinitely and we are interested in 
studying, say, the number of rolls until a 4 is obtained for the first time. 

(d) If the experiment consists of measuring the velocity of a vehicle with infinite preci­
sion, a natural sample space is the set R of real numbers. 

Note that there is no discussion of probabilities so far. The set Ω simply 
specifies the possible outcomes. 

3 DISCRETE PROBABILITY SPACES 

Before continuing with the discussion of σ-fields and probability measures in 
their full generality, it is helpful to consider the simpler case where the sample 
space Ω is finite or countable. 
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Definition 1. A discrete probability space is a triplet (Ω, F , P) such that: 

(a) The sample space Ω is finite or countable: Ω = {ω1, ω2, . . .}. 

(b) The σ-field F is the set of all subsets of Ω. 

(c) The probability measure assigns a number in the set [0, 1] to every subset 
of Ω. It is defined in terms of the probabilities P({ω}) of the elementary 
outcomes, and satisfies 

P(A) = P({ω}), 
ω∈A 

for every A ⊂ Ω, and �
 
P({ω}) = 1.
 

ω∈Ω 

For simplicity, we will usually employ the notation P(ω) instead of P({ω}), 
and we will often denote P(ωi) by pi. 

The following are some examples of discrete probability spaces. Note that 
typically we do not provide an explicit expression for P(A) for every A ⊂ Ω. It 
suffices to specify the probability of elementary outcomes, from which P(A) is 
readily obtained for any A. 

Examples. 

(a) Consider a single toss of a coin. If we believe that heads (H) and tails (T) are equally 
likely, the following is an appropriate model. We set Ω = {ω1, ω2), where ω1 = H 
and ω2 = T , and let p1 = p2 = 1/2. Here, F = {Ø, {H}, {T }, {H,T }}, and 
P(Ø) = 0, P(H) = P(T ) = 1/2, P({H,T }) = 1. 

(b) Consider a single roll of a die. if we believe that all six outcomes are equally likely, 
the following is an appropriate model. We set Ω = {1, 2, . . . , 6} and p1 = = · · · 
p6 = 1/6. 

(c) This example is not necessarily motivated by a meaningful experiment, yet it is a 
legitimate discrete probability space. Let Ω = {1, 2, 5, a, v, aaa, ∗}, and P(1) = .1, 
P(2) = .1, P(5) = .3, P(a) = .15, P(v) = .15, P(aaa) = .2, P(∗) = 0. 

(d) Let Ω = N, and pk = (1/2)k, for k = 1, 2, . . . . More generally, given a parameter 
p ∈ [0, 1), we can define pk = (1 − p)pk−1, for k = 1, 2, . . . . This results in a 
legitimate probability space because ∞ (1 − p)pk−1 = 1.k=1 

(e) Let Ω = N. We fix a parameter λ > 0, and let pk = e−λλk/k!, for every k ∈ N. 
This results in a legitimate probability space because ∞

k=1 e
−λλk/k! = 1. 

(f) We toss an unbiased coin n times. We let Ω = {0, 1}n, and if we believe that all se­
quences of heads and tails are equally likely, we let P(ω) = 1/2n for every ω ∈ Ω. 
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(g) We roll a die n times. We let Ω = {1, 2, . . . , 6}n, and if we believe that all elemen­
tary outcomes (6-long sequences) are equally likely, we let P(ω) = 1/6n for every 
ω ∈ Ω. 

Given the probabilities pi, the problem of determining P(A) for some sub­
set of Ω is conceptually straightforward. However, the calculations involved in 
determining the value of the sum ω∈A P(ω) can range from straightforward to 
daunting. Various methods that can simplify such calculations will be explored 
in future lectures. 

σ-FIELDS 

When the sample space Ω is uncountable, the idea of defining the probability of 
a general subset of Ω in terms of the probabilities of elementary outcomes runs 
into difficulties. Suppose, for example, that the experiment consists of drawing 
a number from the interval [0, 1], and that we wish to model a situation where all 
elementary outcomes are “equally likely.” If we were to assign a probability of 
zero to every ω, this alone would not be of much help in determining the proba­
bility of a subset such as [1/2, 3/4]. If we were to assign the same positive value 
to every ω, we would obtain P({1, 1/2, 1/3, . . .}) = ∞, which is undesirable. 
A way out of this difficulty is to work directly with the probabilities of more 
general subsets of Ω (not just subsets consisting of a single element). 

Ideally, we would like to specify the probability P(A) of every subset of 
Ω. However, if we wish our probabilities to have certain intuitive mathematical 
properties, we run into some insurmountable mathematical difficulties. A so­
lution is provided by the following compromise: assign probabilities to only a 
partial collection of subsets of Ω. The sets in this collection are to be thought 
of as the “nice” subsets of Ω, or, alternatively, as the subsets of Ω of interest. 
Mathematically, we will require this collection to be a σ-field, a term that we 
define next. 
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Definition 2. Given a sample space Ω, a σ-field is a collection F of subsets 
of Ω, with the following properties: 

(a) Ø ∈ F . 

(b) If A ∈ F , then Ac ∈ F . 

(c) If Ai ∈ F for every i ∈ N, then ∪∞i=1Ai ∈ F . 

A set A that belongs to F is called an event, an F-measurable set, or simply 
a measurable set. The pair (Ω, F) is called a measurable space. 

The term “event” is to be understood as follows. Once the experiment is 
concluded, the realized outcome ω either belongs to A, in which case we say 
that the event A has occurred, or it doesn’t, in which case we say that the event 
did not occur. 

Exercise 1. 
(a) Let F be a σ-field. Prove that if A,B ∈ F , then A ∩ B ∈ F . More generally, given 

a countably infinite sequence of events Ai ∈ F , prove that ∩∞i=1Ai ∈ F . 
(b) Prove that property (a) of σ-fields (that is, Ø ∈ F) can be derived from properties 

(b) and (c), assuming that the σ-field F is non-empty. 

The following are some examples of σ-fields. (Check that this is indeed the 
case.) 

Examples. 

(a) The trivial σ-field, F = {Ø, Ω}. 
(b) The collection F = {Ø, A, Ac , Ω}, where A is a fixed subset of Ω. 
(c) The set of all subsets of Ω: F = 2Ω | A ⊂ Ω}.= {A 

(d) Let Ω = {1, 2, . . . , 6}n, the sample space associated with n rolls of a die. Let 
A = {ω = (ω1, . . . ωn) | ω1 ≤ 2}, B = {ω = (ω1, . . . , ωn) | 3 ≤ ω1 ≤ 4}, and 
C = {ω = (ω1, . . . , ωn) | ω1 ≥ 5}, andF = {Ø, A, B, C,A∪B,A∪C,B∪C, Ω}. 

Example (d) above can be thought of as follows. We start with a number 
of subsets of Ω that we wish to have included in a σ-field. We then include 
more subsets, as needed, until a σ-field is constructed. More generally, given a 
collection of subsets of Ω, we can contemplate forming complements, countable 
unions, and countable intersections of these subsets, to form a new collection. 
We continue this process until no more sets are included in the collection, at 
which point we obtain a σ-field. This process is hard to formalize in a rigorous 
manner. An alternative way of defining this σ-field is provided below. We will 
need the following fact. 
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Proposition 1. Let S be an index set (possibly infinite, or even uncountable), 
and suppose that for every s we have a σ-field Fs of subsets of the same 
sample space. Let F = , i.e., a set A belongs to F if and only if ∩s∈S Fs 

A ∈ Fs for every s ∈ S. Then F is a σ-field. 

Proof. We need to verify that F has the three required properties. Since each 
Fs is a σ-field, we have Ø ∈ Fs, for every s, which implies that Ø ∈ F . To 
establish the second property, suppose that A ∈ F . Then, A ∈ Fs, for every s. 
Since each s is a σ-field, we have Ac ∈ Fs, for every s. Therefore, Ac ∈ F , 
as desired. Finally, to establish the third property, consider a sequence {Ai} of 
elements of F . In particular, for a given s ∈ S, every set Ai belongs to Fs. Since 

is a σ-field, it follows that ∪∞ . Since this is true for every s ∈ S,Fs i=1Ai ∈ Fs 

it follows that ∪∞i=1Ai ∈ Fs. This verifies the third property and establishes that 
F is indeed a σ-field. 

Suppose now that we start with a collection C of subsets of Ω, which is not 
necessarily a σ-field. We wish to form a σ-field that contains C. This is always 
possible, a simple choice being to just let F = 2Ω . However, for technical 
reasons, we may wish the σ-field to contain no more sets than necessary. This 
leads us to define F as the intersection of all σ-fields that contain C. Note that 
if H is any other σ-field that contains C, then F ⊂ H. (This is because F was 
defined as the intersection of various σ-fields, one of which is H.) In this sense, 
F is the smallest σ-field containing C. The σ-field F constructed in this manner 
is called the σ-field generated by C, and is often denoted by σ(C). 
Example. Let Ω = [0, 1]. The smallest σ-field that includes every interval [a, b] ⊂ [0, 1] 
is hard to describe explicitly (it includes fairly complicated sets), but is still well-defined, 
by the above discussion. It is called the Borel σ-field, and is denoted by B. A set 
A ⊂ [0, 1] that belongs to this σ-field is called a Borel set. 

PROBABILITY MEASURES 

We are now ready to discuss the assignment of probabilities to events. We have 
already seen that when the sample space Ω is countable, this can be accom­
plished by assigning probabilities to individual elements ω ∈ Ω. However, as 
discussed before, this does not work when Ω is uncountable. We are then led 
to assign probabilities to certain subsets of Ω, specifically to the elements of a 
σ-field F , and require that these probabilities have certain “natural” properties. 

Besides probability measures, it is convenient to define the notion of a mea­
sure more generally. 
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Definition 3. Let (Ω, F) be a measurable space. A measure is a function 
µ : F → [0, ∞], which assigns a nonnegative extended real number µ(A) to 
every set A in F , and which satisfies the following two conditions: 

(a) µ(Ø) = 0; 

(b) (Countable additivity) If {Ai} is a sequence of disjoint sets that belong to 
F , then µ(∪iAi) = ∞

i=1 µ(Ai). 

A probability measure is a measure P with the additional property P(Ω) = 
1. In that case, the triple (Ω, F , P) is called a probability space. 

For any A ∈ F , P(A) is called the probability of the event A. The assign­
ment of unit probability to the event Ω expresses our certainty that the outcome 
of the experiment, no matter what it is, will be an element of Ω. Similarly, the 
outcome cannot be an element of the empty set; thus, the empty set cannot occur 
and is assigned zero probability. If an event A ∈ F satisfies P(A) = 1, we say 
that A occurs almost surely. Note, however, that A happening almost surely is 
not the same as the condition A = Ω. For a trivial example, let Ω = {1, 2, 3}, 
p1 = .5, p2 = .5, p3 = 0. Then the event A = {1, 2} occurs almost surely, since 
P(A) = .5 + .5 = 1, but A = Ω� . The outcome 3 has zero probability, but is still 
possible. 

The countable additivity property is very important. Its intuitive meaning 
is the following. If we have several events A1, A2, . . ., out of which at most 
one can occur, then the probability that “one of them will occur” is equal to 
the sum of their individual probabilities. In this sense, probabilities (and more 
generally, measures) behave like the familiar notions of area or volume: the area 
or volume of a countable union of disjoint sets is the sum of their individual areas 
or volumes. Indeed, a measure is to be understood as some generalized notion 
of a volume. In this light, allowing the measure µ(A) of a set to be infinite is 
natural, since one can easily think of sets with infinite volume. 

The properties of probability measures that are required by Definition 3 are 
often called the axioms of probability theory. Starting from these axioms, many 
other properties can be derived, as in the next proposition. 
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Proposition 2. Probability measures have the following properties. 

(a) (Finite additivity) If the events A1, . . . , An are disjoint, then P(∪n Ai) = � i=1 
n P(Ai).i=1 

(b) For any event A, we have P(Ac) = 1 − P(A). 

(c) If the events A and B satisfy A ⊂ B, then P(A) ≤ P(B). 

(d) (Union bound) For any sequence {Ai} of events, we have 

� ∞ � �

 ∞ 

P Ai ≤ P(Ai). 
i=1 i=1 

(e) (Inclusion-exclusion formula) For any collection of events A1, . . . , An, 

� n � n


P Ai = P(Ai) − P(Ai ∩ Aj )

i=1 i=1 (i,j): i<j


+ P(Ai ∩ Aj ∩ Ak) + · · · + (−1)nP(A1 ∩ · · · ∩ An). 
(i,j,k): i<j<k 

Proof. 
(a) This property is almost identical to condition (b) in the definition of a mea­

sure, except that it deals with a finite instead of a countably infinite collec­
tion of events. Given a finite collection of disjoint events A1, . . . , An, let us 
define Ak = Ø for k > n, to obtain an infinite sequence of disjoint events. 
Then, 

n n�

 � 

 � � �� ∞ ∞ 

P Ai = P Ai = P(Ai) = P(Ai). 
i=1 i=1 i=1 i=1 

Countable additivity was used in the second equality, and the fact P(Ø) = 0 
was used in the last equality. 

(b) The events A and Ac are disjoint. Using part (a), we have P(A ∪ Ac) = 
P(A) + P(Ac). But A ∪ Ac = Ω, whose measure is equal to one, and the 
result follows. 

(c) The events A and B \ A are disjoint. Also, A ∪ (B \ A) = B. Therefore, 
using also part (a), we obtain P(A) ≤ P(A) + P(B \ A) = P(B). 

(d) Left as an exercise. 
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(e) Left as an exercise; 	 a simple proof will be provided later, using random 
variables. 

Part (e) of Proposition 2 admits a rather simple proof that relies on random 
variables and their expectations, a topic to be visited later on. For the special 
case where n = 2, the formula simplifies to 

P(A ∪ B) = P(A) = P(B) − P(A ∩ B). 

Let us note that all properties (a), (c), and (d) in Proposition 2 are also valid 
for general measures (the proof is the same). Let us also note that for a proba­
bility measure, the property P(Ø) = 0 need not be assumed, but can be derived 
from the other properties. Indeed, consider a sequence of sets Ai, each of which 
is equal to the empty set. These sets are disjoint, since Ø ∩ Ø = Ø. Applying 
the countable additivity property, we obtain ∞ P(Ø) = P(Ø) ≤ P(Ω) = 1,i=1 
which can only hold if P(Ø) = 0. 

Finite Additivity 

Our definitions of σ-fields and of probability measures involve countable unions 
and a countable additivity property. A different mathematical structure is ob­
tained if we replace countable unions and sums by finite ones. This leads us to 
the following definitions. 

Definition 4. Let Ω be a sample space. 

(a) A field is a collection F0 of subsets of Ω, with the following properties: 

(i) Ø ∈ F . 
(ii) If A ∈ F , then Ac ∈ F . 

(iii) If A ∈ F and B ∈ F , then A ∪ B ∈ F . 

(b) Let F0 be a field of subsets of Ω. A function P : F0 → [0, 1] is said to be 
finitely additive if 

A,B ∈ F0, A ∩ B = Ø ⇒ P(A ∪ B) = P(A) + P(B). 

We note that finite additivity, for the two case of two events, easily implies 
finite additivity for a general finite number n of events, namely, the property in 
part (a) of Proposition 2. To see this, note that finite additivity for n = 2 allows 
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us to write, for the case of three disjoint events, 

P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2 ∪ A3) = P(A1) + P(A2) + P(A3), 

and we can proceed inductively to generalize to the case of n events. 
Finite additivity is strictly weaker than the countable additivity property of 

probability measures. In particular, finite additivity on a field, or even for the 
special case of a σ-field, does not, in general, imply countable additivity. The 
reason for introducing the stronger countable additivity property is that with­
out it, we are severely limited in the types of probability calculations that are 
possible. On the other hand, finite additivity is often easier to verify. 

CONTINUITY OF PROBABILITIES 

Consider a probability space in which Ω = R. The sequence of events An = 
[1, n] converges to the event A = [1, ∞), and it is reasonable to expect that the 
probability of [1, n] converges to the probability of [1, ∞). Such a property is 
established in greater generality in the result that follows. This result provides 
us with a few alternative versions of such a continuity property, together with 
a converse which states that finite additivity together with continuity implies 
countable additivity. This last result is a useful tool that often simplifies the 
verification of the countable additivity property. 

Theorem 1. (Continuity of probability measures) Let F be a σ-field of 
subsets of Ω, and suppose that P : F → [0, 1] satisfies P(Ω) = 1 as well as 
the finite additivity property. Then, the following are equivalent: 

(a) P is a probability measure (that is, it also satisfies countable additivity). 

(b) If {Ai} is an increasing sequence of sets in F (i.e., Ai ⊂ Ai+1, for all i), 
and A = ∪∞ Ai, then limi→∞ P(Ai) = P(A).i=1 

(c) If {Ai} is a decreasing sequence of sets in F (i.e., Ai ⊃ Ai+1, for all i), 
and A = ∩∞ Ai, then limi→∞ P(Ai) = P(A).i=1 

(d) If {Ai} is a decreasing sequence of sets (i.e., Ai ⊃ Ai+1, for all i) and 
∩∞i=1Ai is empty, then limi→∞ P(Ai) = 0. 

Proof. We first assume that (a) holds and establish (b). Observe that A = A1 ∪
(A2 \ A1) ∪ (A3 \ A2) ∪ . . ., and that the events A1, (A2 \ A1), (A3 \ A2), . . . 
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are disjoint (check this). Therefore, using countable additivity,
 

∞ 

P(A) = P(A1) + P(Ai \ Ai−1) 
i=2 

n 

= P(A1) + lim P(Ai \ Ai−1) 
n→∞ 

i=2 
n 

= P(A1) + lim P(Ai) − P(Ai−1) 
n→∞ 

i=2 

= P(A1) + lim (P(An) − P(A1)) 
n→∞ 

= lim P(An). 
n→∞ 

Suppose now that property (b) holds, let Ai be a decreasing sequence of sets, 
and let A = ∩∞ Ai. Then, the sequence Ac is increasing, and De Morgan’s law, i=1 i 
together with property (b) imply that �� � � � � 

P(Ac) = P i=1 Ai
c = P i=1 Ai

c = lim P(Ai
c), 

n
∩∞ ∪∞

→∞ 

and 

P(A) = 1 − P(Ac) = 1 − lim P(Ac) = lim 1 − P(Ac) = lim P(Ai).i i n→∞ n→∞ n→∞ 

Property (d) follows from property (c), because (d) is just the special case of 
(c) in which the set A is empty. 

To complete the proof, we now assume that property (d) holds and establish 
that property (a) holds as well. Let Bi ∈ F be disjoint events. Let An = 
∪∞i=n Bi. Note that {An} is a decreasing sequence of events. We claim that 
∩∞n=1An = Ø. Indeed, if ω ∈ A1, then ω ∈ Bn for some n, which implies that 
ω / i=n+1Bi = An+1. Therefore, no element of A1 can belong to all of the ∈ ∪∞ 

sets An, which means that that the intersection of the sets An is empty. Property 
(d) then implies that limn→∞ P(An) = 0. 

Applying finite additivity to the n disjoint sets B1, B2, . . . , Bn−1, ∪∞ Bi,i=n 
we have � � � � 

∞ � 

n−1 ∞ 

P Bi = P(Bi) + P Bi . 
i=1 i=1 i=n 

This equality holds for any n, and we can take the limit as n →∞. The first term 
on the right-hand side converges to ∞

i=1 P(Bi). The second term is P(An), and 
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as observed before, converges to zero. We conclude that
 

P 

� ∞

 

i=1 

Bi 

� 

= 
n� 

i=1 

P(Bi), 

and property (a) holds. 
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