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The following are two fundamental probabilistic models that can serve as 
building blocks for more complex models: 

(a) The uniform distribution on [0, 1], which assigns probability b−a to every 
interval [a, b] ⊂ [0, 1]. 

(b) A model of an infinite sequence of fair coin tosses that assigns equal proba­
bility, 1/2n, to every possible sequence of length n. 

These two models are often encountered in elementary probability and used 
without further discussion. Strictly speaking, however, we need to make sure 
that these two models are well-posed, that is, consistent with the axioms of 
probability. To this effect, we need to define appropriate σ-fields and probability 
measures on the corresponding sample spaces. In what follows, we describe the 
required construction, while omitting the proofs of the more technical steps. 

´1 CARATHEODORY’S EXTENSION THEOREM 

The general outline of the construction we will use is as follows. We are in­
terested in defining a probability measure with certain properties on a given 
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measurable space (Ω, F). We consider a smaller collection, F0 ⊂ F , of subsets 
of Ω, which is a field, and on which the desired probabilities are easy to define. 
(Recall that a field is a collection of subsets of the sample space that includes 
the empty set, and which is closed under taking complements and under finite 
unions.) Furthermore, we make sure that F0 is rich enough, so that the σ-field 
it generates is the same as the desired σ-field F . We then extend the definition 
of the probability measure from F0 to the entire σ-field F . This is possible, un­
der few conditions, by virtue of the following fundamental result from measure 
theory. 

Theorem 1. (Carathéodory’s extension theorem) Let F0 be a field of sub­
sets of a sample space Ω, and let F = σ(F0) be the σ-field that it generates. 
Suppose that P0 is a mapping from F0 to [0, 1] that satisfies P0(Ω) = 1, as 
well as countable additivity on F0. 

Then, P0 can be extended uniquely to a probability measure on (Ω, F). 
That is, there exists a unique probability measure P on (Ω, F) such that 
P(A) = P0(A) for all A ∈ F0. 

Remarks: 
(a) The proof of the extension theorem is fairly long and technical; see, e.g., 

Appendix A of [Williams]. 

(b) The main hurdle in applying the extension theorem is the verification of 
the countable additivity property of P0 on F0; that is, one needs to show 
that if {Ai} is a sequence disjoint sets in F0, and if ∪∞i=1Ai ∈ F0, then 

i=1Ai) = ∞ P0(Ai). Alternatively, in the spirit of Theorem 1 from P0(∪∞ i=1 
Lecture 1, it suffices to verify that if {Ai} is a decreasing sequence of sets 
in F0 and if ∩∞ Ai is empty, then limn→∞ P0(Ai) = 0. Indeed, while i=1

Theorem 1 of Lecture 1 was stated for the case where F is a σ-field, an 
inspection of its proof indicates that it remains valid even if F is replaced 
by a field F0. 

In the next two sections, we consider the two models of interest. We define 
appropriate fields, define probabilities for the events in those fields, and then use 
the extension theorem to obtain a probability measure. 

2 LEBESGUE MEASURE ON [0, 1] AND ON R 

In this section, we construct the uniform probability measure on [0, 1], also 
known as Lebesgue measure. Under the Lebesgue measure, the measure as­
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signed to any subset of [0, 1] is meant to be equal to its length. While the defini­
tion of length is immediate for simple sets (e.g., the set [a, b] has length b − a), 
more general sets present more of a challenge. 

We start by considering the sample space Ω = (0, 1], which is slightly more 
convenient than the sample space [0, 1]. 

2.1 A σ-field and a field of subsets of (0, 1] 

Consider the collection C of all intervals [a, b] contained in (0, 1], and let F be 
the σ-field generated by C. As mentioned in the Lecture 1 notes, this is called 
the Borel σ-field, and is denoted by B. Sets in this σ-field are called Borel sets 
or Borel measurable sets. 

Any set that can be formed by starting with intervals [a, b] and using a count­
able number of set-theoretic operations (taking complements, or forming count­
able unions and intersections of previously formed sets) is a Borel set. For exam­
ple, it can be verified that single-element sets, {a}, are Borel sets. Furthermore, 
intervals (a, b] are also Borel sets since they are of the form [a, b] \ {a}. Every 
countable set is also a Borel set, since it is the union of countably many single­
element sets. In particular, the set of rational numbers in (0, 1], as well as its 
complement, the set of irrational numbers in (0, 1], is a Borel set. While Borel 
sets can be fairly complicated, not every set is a Borel set; see Sections 5-6. 

Directly defining a probability measure for all Borel sets directly is difficult, 
so we start by considering a smaller collection, F0, of subsets of (0, 1]. We let 
F0 consist of the empty set and all sets that are finite unions of intervals of the 
form (a, b]. In more detail, if a set A ∈ F0 is nonempty, it is of the form 

A = (a1, b1] ∪ · · · ∪ (an, bn], 

where 0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn ≤ 1, and n ∈ N. 

Lemma 1. We have σ(F0) = σ(C) = B. 

Proof. We have already argued that every interval of the form (a, b] is a Borel 
set. Hence, a typical element of F0 (a finite union of such intervals) is also a 
Borel set. Therefore, F0 ⊂ B, which implies that σ(F0) ⊂ σ(B) = B. (The 
last equality holds because B is already a σ-field and is therefore equal to the 
smallest σ-field that contains B.) 

Note that for a > 0, we have [a, b] = ∩∞ (a−1/n, b]. Since (a−1/n, b] ∈n=1

F0 ⊂ σ(F0), it follows that [a, b] ∈ σ(F0). Thus, C ⊂ σ(F0), which implies 
that 

B = σ(C) ⊂ σ σ(F0) = σ(F0) ⊂ B. 
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(The second equality holds because the smallest σ-field containing σ(F0) is 
σ(F0) itself.) The first equality in the statement of the proposition follows. 
Finally, the equality σ(C) = B is just the definition of B. 

Lemma 2. 

(a) The collection F0 is a field. 

(b) The collection F0 is not a σ-field. 

Proof. 
(a) By definition, Ø ∈ F0. Note that Øc = (0, 1] ∈ F0. More generally, if A is 

of the form A = (a1, b1]∪· · ·∪(an, bn], its complement is (0, a1]∪(b1, a2]∪ 
· · · ∪ (bn, 1], which is also in F0. Furthermore, the union of two sets that 
are unions of finitely many intervals of the form (a, b] is also a union of 
finitely many such intervals. For example, if A = (1/8, 2/8] ∪ (4/8, 7/8] 
and B = (3/8, 5/8], then A ∪ B = (1/8, 2/8] ∪ (3/8, 7/8]. 

(b) To see that F0 is not a σ-field, note that (0, n/(n + 1)] ∈ F0, for every 
n ∈ N, but the union of these sets, which is (0, 1), does not belong to 
F0. 

2.2 The uniform measure on (0, 1] 

For every A ∈ F0 of the form 

A = (a1, b1] ∪ · · · ∪ (an, bn], 

where 0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn ≤ 1, and n ∈ N, we define 

P0(A) = (b1 − a1) + + (bn − an),· · · 

which is its total length. Note that P0(Ω) = P (0, 1] = 1. Also P0 is finitely 
additive. Indeed if A1, . . . , An are disjoint finite unions of intervals of the form 
(a, b], then A = ∪1≤i≤nAi is also a finite union of such intervals and its to­
tal length is the sum of the lengths of the sets Ai. It turns out that P0 is also 
countably additive on F0. This essentially boils down to checking the fol­
lowing. If (a, b] = i=1(ai, bi], where the intervals (ai, bi] are disjoint, then � ∪∞

∞ (bi − ai). This may appear intuitively obvious, but a formal proof b − a = i=1

is nontrivial; see, e.g., [Williams, Chapter A1]. 
We can now apply the Extension Theorem and conclude that there exists a 

probability measure P, called the Lebesgue or uniform measure, defined on the 
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entire Borel σ-field B, that agrees with P0 on F0. In particular, P (a, b] = b−a, 
for every interval (a, b] ⊂ (0, 1]. 

By augmenting the sample space Ω to include 0, and assigning zero prob­
ability to it, we obtain a new probability model with sample space Ω = [0, 1]. 
(Exercise: define formally the sigma-field on [0, 1], starting from the σ-field on 
(0, 1].) 

Exercise 1. Let A be the set of irrational numbers in [0, 1]. Show that P(A) = 1. 

Example. Let A be the set of points in [0, 1] whose decimal representation contains 
only odd digits. (We disallow decimal representations that end with an infinite string of 
nines. Under this condition, every number has a unique decimal representation.) What 
is the Lebesgue measure of this set? 

Observe that A = n=1An, where An is the set of points whose first n digits are ∩∞

odd. It can be checked that An is a union of 5n intervals, each with length 1/10n. Thus, 
P(An) = 5n/10n = 1/2n. Since A ⊂ An, we obtain P(A) ≤ P(An) = 1/2n. Since 
this is true for every n, we conclude that P(A) = 0. 

Exercise 2. Let A be the set of points in [0, 1] whose decimal representation contains 
at least one digit equal to 9. Find the Lebesgue measure of that set. 

Note that there is nothing special about the interval (0, 1]. For example, if 
we let Ω = (c, d], where c < d, and if (a, b] ⊂ (c, d], we can define P0 (a, b] = 
(b − a)/(d − c) and proceed as above to obtain a uniform probability measure 
on the set (c, d], as well as on the set [c, d]. 

On the other hand, a “uniform” probability measure on the entire real line, 
R, that assigns equal probability to intervals of equal length, is incompatible 
with the requirement P(Ω) = 1. What we obtain instead, in the next section, is 
a notion of length which becomes infinite for certain sets. 

2.3 The Lebesgue measure on R 

Let Ω = R. We first define a σ-field of subsets of R. This can be done in several 
ways. It can be verified that the three alternatives below are equivalent. 

(a) Let C be the collection of all intervals of the form [a, b], and let B = σ(C) 
be the σ-field that it generates. 

(b) Let D be the collection of all intervals of the form (−∞, b], and let B = 
σ(D) be the σ-field that it generates. 

(c) For any n, we define the Borel σ-field of (n, n + 1] as the σ-field generated 
by sets of the form [a, b] ⊂ (n, n + 1]. We then say that A is a Borel subset 
of R if A ∩ (n, n + 1] is a Borel subset of (n, n + 1], for every n. 
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Exercise 3. Show that the above three definitions of B are equivalent. 

Let Pn be the uniform measure on (n, n + 1] (defined on the Borel sets in 
(n, n + 1]). Given a set A ⊂ R, we decompose it into countably many pieces, 
each piece contained in some interval (n, n + 1], and define its “length” µ(A) 
using countable additivity: 

∞ � � 
µ(A) = Pn A ∩ (n, n + 1] . 

∞

n=−∞ 

∞

It turns out that µ is a measure on (R, B), called again Lebesgue measure. 
However, it is not a probability measure because µ(R) = ∞. 

Exercise 4. Show that µ is a measure on (R, B). Hint: Use the countable additivity of 
the measures P to establish the countable additivity of . You can also the fact that if µn 

∞
i=1 j=1 aij j=1 i=1 aij .
∞the numbers aij are nonnegative, then = 

3 COIN TOSSES: A “UNIFORM” MEASURE ON {0, 1}∞ 

Consider an infinite sequence of fair coin tosses. We wish to construct a proba­
bilistic model of this experiment under which every possible sequence of results 
of the first n tosses has the same probability, 1/2n . 

The sample space for this experiment is the set {0, 1}∞ of all infinite se­
quences ω = (ω1, ω2, . . .) of zeroes and ones (we use zeroes and ones instead 
of heads and tails). 

For technical reasons, it is not possible to assign a probability to every subset 
of the sample space. Instead, we proceed as in Section 2, i.e., first define a field 
of subsets, assign probabilities to sets that belong to this field, and then extend 
them to a probability measure on the σ-field generated by that field. 

3.1 A field and a σ-field of subsets of {0, 1}n 

Let Fn be the collection of events whose occurrence can be decided by looking 
at the results of the first n tosses. For example, the event {ω | ω1 = 1 and ω2 =�
ω4} belongs to F4 (as well as to Fk for every k ≥ 4). 

Let B be an arbitrary subset of {0, 1}n. Consider the set 

A = {ω ∈ {0, 1}∞ | (ω1, ω2, . . . , ωn) ∈ B}. 

We can express A ⊂ {0, 1}∞ in the form A = B × {0, 1}∞. (This is simply 
saying that any sequence in A can be viewed as a pair consisting of a n-long 
sequence that belongs to B, followed by an arbitrary infinite sequence. The 
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event A belongs to Fn, and all elements of Fn are of this form, for some A. It 
is easily verified that Fn is a σ-field. 

Exercise 5. Provide a formal proof that Fn is a σ-field. 

The σ-field Fn, for any fixed n, is too small; it can only serve to model 
the first n coin tosses. We are interested instead in sets that belong to Fn, for 
arbitrary n, and this leads us to define F0 = ∪∞n=1Fn, the collection of sets that 
belong to Fn for some n. Intuitively, A ∈ F0 if the occurrence or nonoccurrence 
of A can be decided after a fixed number of coin tosses.1 

Example. Let An = {ω | ωn = 1}, the event that the nth toss results in a “1”. Note 
that An Let A = i=1An, which is the event that there is at least one “1” in ∈ Fn. ∪∞

the infinite toss sequence. The event A does not belong to Fn, for any n. (Intuitively, 
having observed a sequence of n zeroes does not allow us to decide whether there will 
be a subsequent “1” or not.) Consider also the complement of A, which is the event that 
the outcome of the experiment is an infinite string of zeroes. Once more, we see that Ac 

does not belong to F0. 

The preceding example shows that F0 is not a σ-field. On the other hand, it 
can be verified that F0 is a field. 

Exercise 6. Prove that F0 is a field. 

We would like to have a probability model that assigns probabilities to all of 
the events in Fn, for every n. This means that we need a σ-field that includes 
F0. On the other hand, we would like our σ-field to be as small as possible, i.e., 
contain as few subsets of {0, 1}n as possible, to minimize the possibility that it 
includes pathological sets to which probabilities cannot be assigned. This leads 
us to define F as the sigma-field σ(F0) generated by F0. 

3.2 A probability measure on {0, 1}∞, F) 

We start by defining a finitely additive function P0 on the field F0 that also 
satisfies P0({0, 1}∞) = 1. This is accomplished as follows. Every set A in F0 

is of the form B × {0, 1}∞, for some n and some B ⊂ {0, 1}n . We then let 
P0(A) = |B|/2n .2 Note that the event {ω1, ω2, . . . , ωn}× {0, 1}n, which is the 
event that the first n tosses resulted in a particular sequence {ω1, ω2, . . . , ωn}, 

1The union ∪∞i=1Fi = is not the same as the collection of sets of the form ∪∞F0 i=1Ai, 
for Ai ∈ Fi. For an illustration, if F1 = {{a}, {b, c}} and F2 = {{d}}, then F1 ∪ F2 = 
{{a}, {b, c}, {d}}. Note that {b, c} ∪ {d} = {b, c, d} is not in F1 ∪ F2. 

2For any set A, |A| denotes its cardinality, the number of elements it contains. 
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is assigned probability 1/2n. In particular, all possible sequences of length are 
assigned equal probability, as desired. 

Before proceeding further, we need to verify that the above definition is 
consistent. Note that same set A can belong to Fn for several values of n. We 
therefore need to check that when we apply the definition of P0(A) for different 
choices of n, we obtain the same value. Indeed, suppose that A ∈ Fm, which 
implies that A ∈ Fn, for n > m. In this case, A = B ×{0, 1}∞ = C ×{0, 1}∞, 
where B ⊂ {0, 1}n and C ⊂ {0, 1}m. Thus, B = C × {0, 1}n−m, and |B| = 
|C| · 2n−m . One application of the definition yields P0(A) = |B|/2n, and 
another yields P0(A) = |C|/2m. Since |B| = |C| · 2n−m, they both yield the 
same value. 

It is easily verified that P0(Ω) = 1, and that P0 is finitely additive: if A,B ⊂ 
Fn are disjoint, then P(A ∪ B) = P(A) + P(B). It also turns out that P0 

is also countably additive on F0. (The proof of this fact is more elaborate, 
and is omitted.) We can now invoke the Extension Theorem and conclude that 
there exists a unique probability measure on F , the σ-field generated by F0, 
that agrees with P0 on F0. This probability measure assigns equal probability, 
1/2n, to every possible sequence of length n, as desired. This confirms that the 
intuitive process of an infinite sequence of coin flips can be captured rigorously 
within the framework of probability theory. 

Exercise 7. Consider the probability space ({0, 1}∞, F , P). Let A be the set of all 
infinite sequences ω for which ωn = 0 for every odd n. 

(a) Establish that A /∈ F0, but A ∈ F . 
(b) Compute P(A). 

Similar to the case of Borel sets in [0, 1], there exist subsets of {0, 1}∞ that 
do not belong to F . In fact the similarities between the models of Sections 2 and 
3 are much deeper; the two models are essentially equivalent, although we will 
not elaborate on the meaning of this. Let us only say that the equivalence relies 
on the one-to-one correspondence of the sets [0, 1] and {0, 1}∞ obtained through 
the binary representation of real numbers. Intuitively, generating a real number 
at random, according to the uniform distribution (Lebesgue measure) on [0, 1], 
is probabilistically equivalent to generating each bit in its binary expansion at 
random. 

4 COMPLETION OF A PROBABILITY SPACE 

Starting with a field F0 and a countably additive function P0 on that field, the 
Extension Theorem leads to a measure on the smallest σ-field containing F0. 
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Can we extend the measure further, to a larger σ-field? If so, is the extension 
unique, or will there have to be some arbitrary choices? We describe here a 
generic extension that assigns probabilities to certain additional sets A for which 
there is little choice. 

Consider a probability space (Ω, F , P). Suppose that B ∈ F , and P(B) = 
0. Any set B with this property is called a null set. (Note that in this context, 
“null” is not the same as “empty.”) Suppose now that A ⊂ B. If the set A is not 
in F , it is not assigned a probability; were it to be assigned one, the only choice 
that would not lead to a contradiction is a value of zero. 

The first step is to augment the σ-field F so that it includes all subsets of 
null sets. This is accomplished as follows: 
(a) Let N be the collection of all subsets of null sets; 

(b) Define F∗ = σ(F ∪ N ), the smallest σ-field that contains F as well as all 
subsets of null sets. 

(c) Extend P in a natural manner to obtain a new probability measure P∗ on 
(Ω, F∗). In particular, we let P∗(A) = 0 for every subset A ⊂ B of every 
null set B ∈ F . It turns out that such an extension is always possible and 
unique. 

The resulting probability space is said to be complete. It has the property that 
all subsets of null sets are included in the σ-field and are also null sets. 

When Ω = [0, 1] (or Ω = R), F is the Borel σ-field, and P is Lebesgue 
measure, we obtain an augmented σ-field F∗ and a measure P∗. The sets in F∗ 

are called Lebesgue measurable sets. The new measure P∗ is referred to by the 
same name as the measure P (“Lebesgue measure”). 

5 FURTHER REMARKS 

We record here a few interesting facts related to Borel σ-fields and the Lebesgue 
measure. Their proofs tend to be fairly involved. 

(a) There exist sets that are Lebesgue measurable but not Borel measurable, 
i.e., F is a proper subset of F∗. 

(b) There are as many Borel measurable sets as there are points on the real 
line (this is the “cardinality of the continuum”), but there are as many 
Lebesgue measurable sets as there are subsets of the real line (which is a 
higher cardinality) [Billingsley] 

(c) There exist subsets of [0, 1] that are not Lebesgue measurable; see Section 
6 and [Williams, p. 192]. 
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(d) It is not possible to construct a probability space in which the σ-field in­
cludes all subsets of [0, 1], with the property that P({x}) = 0 for every 
x ∈ (0, 1] [Billingsley, pp. 45-46]. 

6 APPENDIX: ON STRANGE SETS (optional reading) 

In this appendix, we provide some evidence that not every subset of (0, 1] is 
Lebesgue measurable, and, furthermore, that Lebesgue measure cannot be ex­
tended to a measure defined for all subsets of (0, 1]. 

Let “+” stand for addition modulo 1 in (0, 1]. For example, 0.5+0.7 = 0.2, 
instead of 1.2. You may want to visualize (0, 1] as a circle that wraps around so 
that after 1, one starts again at 0. If A ⊂ (0, 1], and x is a number, then A + x 
stands for the set of all numbers of the form y + x where y ∈ A. 

Define x and y to be equivalent if x + r = y for some rational number r. 
Then, (0, 1] can be partitioned into equivalence classes. (That is, all elements 
in the same equivalence class are equivalent, elements belonging to different 
equivalent classes are not equivalent, and every x ∈ (0, 1] belongs to exactly 
one equivalence class.) Let us pick exactly one element from each equivalence 
class, and let H be the set of the elements picked this way. (This fact that a set H 
can be legitimately formed this way involves the Axiom of Choice, a generally 
accepted axiom of set theory.) We will now consider the sets of the form H + r, 
where r ranges over the rational numbers in (0, 1]. Note that there are countably 
many such sets. 

The sets H + r are disjoint. (Indeed, if r1 =� r2, and if the two sets H + r1, 
H + r2 share the point h1 + r = h2 + r2, with h1, h2 ∈ H , then h1 and h2 

differ by a rational number and are equivalent. If h1 =� h2, this contradicts the 
construction of H , which contains exactly one element from each equivalence 
class. If h1 = h2, then r1 = r2, which is again a contradiction.) Therefore, 
(0, 1] is the union of the countably many disjoint sets H + r. 

The sets H + r, for different r, are “translations” of each other (they are 
all formed by starting from the set H and adding a number, modulo 1). Let us 
say that a measure is translation-invariant if it has the following property: if A 
and A + x are measurable sets, then P(A) = P(A + x). Suppose that P is a 
translation invariant probability measure, defined on all subsets of (0, 1]. Then, 

1 = P (0, 1] = P(H + r) = P(H), 
r r 

where the sum is taken over all rational numbers in (0, 1]. But this impossible. 
We conclude that a translation-invariant measure, defined on all subsets of (0, 1] 
does not exist. 
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On the other hand, it can be verified that the Lebesgue measure is translation-
invariant on the Borel σ-field, as well as its extension, the Lebesgue σ-field. This 
implies that the Lebesgue σ-field does not include all subsets of (0, 1]. 

An even stronger, and more counterintuitive example is the following. It in­
dicates, that the ordinary notion of area or volume cannot be applied to arbitrary 
sets. 

The Banach-Tarski Paradox. Let S be the two-dimensional surface of the unit 
sphere in three dimensions. There exists a subset F of S such that for any k ≥ 3, 

S = (τ1F ) ∪ · · · ∪ (τkF ), 

where each τi is a rigid rotation and the sets τiF are disjoint. For example, S 
can be made up by three rotated copies of F (suggesting probability equal to 
1/3, but also by four rotated copies of F , suggesting probability equal to 1/4). 
Ordinary geometric intuition clearly fails when dealing with arbitrary sets. 
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