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1 COMMENTS ON EXPECTED VALUES 

(a) Recall that E[X] is well defined unless both sums x:x<0 xpX (x) and 

x:x>0 xpX (x) are infinite. Furthermore, E[X] is well-defined and finite if 
and only if both sums are finite. This is the same as requiring that 

E[|X|] = 
x 

|x|pX (x) < ∞. 

Random variables that satisfy this condition are called integrable. 

(b) Note that for any random variable X , E[X2] is always well-defined (whether 
finite or infinite), because all the terms in the sum x x

2pX (x) are nonneg­
ative. If we have E[X2] < ∞, we say that X is square integrable. 

(c) Using the inequality |x| ≤ 1 + x2, we have E[|X|] ≤ 1 + E[X2], which 
shows that a square integrable random variable is always integrable. 

(d) Because of the formula var(X) = E[X2] − (E[X])2, we see that: (i) if X is 
square integrable, the variance is finite; (ii) if X is integrable, but not square 
integrable, the variance is infinite; (iii) if X is not integrable, the variance is 
undefined. 
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2 EXPECTED VALUES OF SOME COMMON RANDOM VARIABLES 

In this section, we use either the definition or the properties of expectations to 
calculate the mean and variance of a few common discrete random variables. 

(a) Bernoulli(p). Let X be a Bernoulli random variable with parameter p. 
Then, 

E[X] = 1 p + 0 (1 − p) = p,· · 
var(X) = E[X2] − (E[X])2 = 12 p + 02 (1 − p) − p 2 = p(1 − p).· · 

(b) Binomial(n, p). Let X be a binomial random variable with parameters n 
and p. We note that X can be expressed in the form X = i

n 
=1 Xi, where 

X1, . . . , Xn are independent Bernoulli random variables with a common 
parameter p. It follows that 

n

E[X] = E[Xi] = np. 
i=1 

Furthermore, using the independence of the random variables Xi, we have 

n

var(X) = var(Xi) = np(1 − p). 
i=1 

(c) Geometric(p). Let X be a geometric random variable with parameter p. 
We will use the formula E[X] = ∞

n=0 P(X > n). We observe that 

∞

P(X > n) = (1 − p)j−1 p = (1 − p)n , 
j=n+1 

which implies that 
∞ 1

E[X] = (1 − p)n = . 
p

n=0 

The variance of X is given by 

var(X) = 
1 −

2 

p
, 

p

but we defer the derivation to a later section. 
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(d) Poisson(λ). Let X be a Poisson random variable with parameter λ. A direct 
calculation yields 

� λn 

E[X] = e−λ n 
∞

n! 
n=0 
∞

λn 

= e−λ n 
n! 

n=1 
∞

λn 

= e−λ 

(n − 1)!
n=1 � λn 

= λe−λ 
∞

n! 
n=0 

= λ. 

The variance of X turns out to satisfy var(X) = λ, but we defer the deriva­
tion to a later section. We note, however, that the mean and the variance of a 
Poisson random variable are exactly what one would expect, on the basis of 
the formulae for the mean and variance of a binomial random variable, and 
taking the limit as n →∞, p → 0, while keeping np fixed at λ. 

(e) Power(α). Let X be a random variable with a power law distribution with 
parameter α. We have 

∞ ∞ 1
E[X] = P(X > k) = .

(k + 1)α 
k=0 k=0 

If α ≤ 1, the expected value is seen to be infinite. For α > 1, the sum 
is finite, but a closed form expression is not available; it is known as the 
Riemann zeta function, and is denoted by ζ(α). 

3 COVARIANCE AND CORRELATION 

3.1 Covariance 

The covariance of two square integrable random variables, X and Y , is denoted 
by cov(X, Y ), and is defined by �� �� �� 

cov(X, Y ) = E X − E[X] Y − E[Y ] . 

When cov(X, Y ) = 0, we say that X and Y are uncorrelated. 
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Note that, under the square integrability assumption, the covariance is al­
ways well-defined and finite. This is a consequence of the fact that |XY | ≤
(X2 + Y 2)/2, which implies that XY , as well as (X − E[X])(Y − E[Y ]), are 
integrable. 

Roughly speaking, a positive or negative covariance indicates that the values 
of X − E[X] and Y − E[Y ] obtained in a single experiment “tend” to have the 
same or the opposite sign, respectively. Thus, the sign of the covariance provides 
an important qualitative indicator of the relation between X and Y . 

We record a few properties of the covariance, which are immediate conse­
quences of its definition: 

(a) cov(X, X) = var(X); 

(b) cov(X, Y + a) = cov(X, Y ); 

(c) cov(X, Y ) = cov(Y, X); 

(d) cov(X, aY + bZ) = a cov(X, Y ) + b cov(X, Z).· · 

An alternative formula for the covariance is 

cov(X, Y ) = E[XY ] − E[X] E[Y ], 

as can be verified by a simple calculation. Note that if X and Y are independent, 
we have E[XY ] = E[X] E[Y ], which implies that cov(X, Y ) = 0. Thus, if X 
and Y are independent, they are also uncorrelated. However, the reverse is not 
true, as illustrated by the following example. 

Example. Suppose that the pair of random variables (X, Y ) takes the values (1, 0), 
(0, 1), (−1, 0), and (0, −1), each with probability 1/4. Thus, the marginal PMFs of X 
and Y are symmetric around 0, and E[X] = E[Y ] = 0. Furthermore, for all possible 
value pairs (x, y), either x or y is equal to 0, which implies that XY = 0 and E[XY ] = 
0. Therefore, 

cov(X, Y ) = E[XY ] − E[X] E[Y ] = 0, 

and X and Y are uncorrelated. However, X and Y are not independent since, for 
example, a nonzero value of X fixes the value of Y to zero. 

3.2 Variance of the sum of random variables 

The covariance can be used to obtain a formula for the variance of the sum of 
several (not necessarily independent) random variables. In particular, if X1, X2, 
. . . , Xn are random variables with finite variance, we have 

var(X1 + X2) = var(X1) + var(X2) + 2cov(X1, X2), 
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and, more generally,


n n n−1 n

var Xi = var(Xi) + 2 cov(Xi, Xj ). 
i=1 i=1 i=1 j=i+1 

This can be seen from the following calculation, where for brevity, we denote
X̃i = Xi − E[Xi]: � � ⎡� �2 

⎤ 
n n

var Xi = E ⎣ X̃i ⎦


i=1 i=1 ⎡ ⎤ 
n n

= E ⎣ X̃iX̃j ⎦ 

i=1 j=1 

n n

= E[X̃iX̃j ] 
i=1 j=1 

n � � � n

= 
� 

E X̃i 
2 + 2 

n−1 � 
E[X̃iX̃j ] 

i=1 i=1 j=i+1 �n n−1 n

= var(Xi) + 2 cov(Xi, Xj ). 
i=1 i=1 j=i+1 

3.3 Correlation coefficient 

The correlation coefficient ρ(X, Y ) of two random variables X and Y that 
have nonzero and finite variances is defined as 

cov(X, Y )
ρ(X, Y ) = � . 

var(X)var(Y ) 

(The simpler notation ρ will also be used when X and Y are clear from the 
context.) It may be viewed as a normalized version of the covariance cov(X, Y ). 
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Theorem 1. Let X and Y be discrete random variables with positive vari­
ance, and correlation coefficient equal to ρ. 

(a) We have −1 ≤ ρ ≤ 1. 

(b) We have ρ = 1 (respectively, ρ = −1) if and only if there exists a positive 
(respectively, negative) constant c such that Y −E[Y ] = a(X −E[X]), with 
probability 1. 

The proof of Theorem 1 relies on the Schwarz (or Cauchy-Schwarz) inequal­
ity, given below. 

Proposition 1. (Cauchy-Schwarz inequality) For any two random vari­
ables, X and Y , with finite variance, we have � �2E[XY ] ≤ E[X2] E[Y 2]. 

Proof: Let us assume that E[Y 2] = 0� ; otherwise, we have Y = 0 with probabil­
ity 1, and hence E[XY ] = 0, so the inequality holds. We have �� �2 

� 
E[XY ]

0 ≤ E X − 
E[Y 2] 

Y � � �2 
� 

E[XY ] E[XY ]
= E X2 − 2

E[Y 2] 
XY + � 

E[Y 2] 
�2 Y 2 

� �2 

= E[X2] − 2
E[XY ]

E[XY ] + � E[XY ] �2 E[Y 2]
E[Y 2] E[Y 2] � �2E[XY ]

= E[X2] − ,
E[Y 2] 

i.e., 
� 
E[XY ] 

�2 ≤ E[X2] E[Y 2]. 

Proof of Theorem 1: 

(a) Let X̃ = X − E[X] and Ỹ = Y − E[Y ]. Using the Schwarz inequality, we 
get � �2 

� 
E[X̃Ỹ ] 

�2 

ρ(X, Y ) = 
E[X̃2] E[Ỹ 2] 

≤ 1,


and hence |ρ(X, Y )| ≤ 1.
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(b) One direction is straightforward. If Ỹ = aX̃ , then 

E[Xa ˜ X̃] a 
ρ(X, Y ) = � = , 

E[X̃2] E[(aX̃)2] |a| 

which equals 1 or −1 depending on whether a is positive or negative. � �2To establish the reverse direction, let us assume that ρ(X, Y ) = 1, which 
implies that E[X̃2]E[Ỹ 2] = 

� 
E[X̃Ỹ ] 

�2. Using the inequality established in 
the proof of Proposition 1, we conclude that the random variable 

E[X̃Ỹ ]
X̃ − 

E[Ỹ 2] 
Ỹ

is equal to zero, with probability 1. It follows that, with probability 1, 

X̃ = 
E[X̃Ỹ ]

Ỹ = 
E[X̃2] 

Y . 
E[Ỹ 2] E[Ỹ 2] 

ρ(X, Y ) ˜

Note that the sign of the constant ratio of X̃ and Ỹ is determined by the sign 
of ρ(X, Y ), as claimed. 

Example. Consider n independent tosses of a coin with probability of a head equal to 
p. Let X and Y be the numbers of heads and of tails, respectively, and let us look at the 
correlation coefficient of X and Y . Here, we have X +Y = n, and also E[X]+E[Y ] = 
n. Thus, � � 

X − E[X] = − Y − E[Y ] . 

We will calculate the correlation coefficient of X and Y , and verify that it is indeed 
equal to −1. 

We have �� �� �� 
cov(X, Y ) = E X − E[X] Y − E[Y ] �� �2 

� 
= −E X − E[X] 

= −var(X). 

Hence, the correlation coefficient is 

ρ(X, Y ) = � 
cov(X, Y )

= � 
−var(X)

= −1. 
var(X)var(Y ) var(X)var(X) 
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4 INDICATOR VARIABLES AND THE INCLUSION-EXCLUSION FOR­
MULA 

Indicator functions are special discrete random variables that can be useful in 
simplifying certain derivations or proofs. In this section, we develop the inclusion-
exclusion formula and apply it to a matching problem. 

Recall that with every event A, we can associate its indicator function, 
which is a discrete random variable IA : Ω → {0, 1}, defined by IA(ω) = 1 if 
ω ∈ A, and IA(ω) = 0 otherwise. Note that IAc = 1 − IA and that E[IA] = 
P(A). These simple observations, together with the linearity of expectations 
turn out to be quite useful. 

4.1 The inclusion-exclusion formula 

Note that IA∩B = IAIB , for every A,B ∈ F . Therefore, 

IA∪B = 1 − I(A∪B)c = 1 − IAc∩Bc = 1 − IAc IBc 

= 1 − (1 − IA)(1 − IB ) = IA + IB − IAIB . 

Taking expectations of both sides, we obtain 

P(A ∪ B) = P(A) + P(B) − P(A ∩ B), 

an already familiar formula. 
We now derive a generalization, known as the inclusion-exclusion formula. 

Suppose we have a collection of events Aj , j = 1, . . . , n, and that we are inter­
ested in the probability of the event B = ∪n

j=1Aj . Note that 

n

IB = 1 − (1 − IAj ). 
j=1 

We begin with the easily verifiable fact that for any real numbers a1, . . . , an, we 
have 

n

(1 − aj ) =1 − aj + aiaj − aiaj ak 

j=1 1≤j≤n 1≤i<j≤n 1≤i<j<k≤n 

+ + (−1)n an.· · · a1 · · · 

We replace aj by IAj , and then take expectations of both sides, to obtain 
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P(B) = P(Aj ) − P(Ai ∩ Aj ) − P(Ai ∩ Aj ∩ Ak) 
1≤j≤n 1≤i<j≤n 1≤i<j<k≤n 

+ · · · + (−1)nP(A1 ∩ · · · ∩ An). 

4.2 The matching problem 

Suppose that n people throw their hats in a box, where n ≥ 2, and then each 
person picks one hat at random. (Each hat will be picked by exactly one person.) 
We interpret “at random” to mean that every permutation of the n hats is equally 
likely, and therefore has probability 1/n!. 

In an alternative model, we can visualize the experiment sequentially: the 
first person picks one of the n hats, with all hats being equally likely; then, 
the second person picks one of the remaining n − 1 remaining hats, with every 
remaining hat being equally likely, etc. It can be verified that the second model 
is equivalent to the first, in the sense that all permutations are again equally 
likely. 

We are interested in the mean, variance, and PMF of a random variable X , 
defined as the number of people that get back their own hat.1 This problem is 
best approached using indicator variables. 

For the ith person, we introduce a random variable Xi that takes the value 1 
if the person selects his/her own hat, and takes the value 0 otherwise. Note that 

X = X1 + X2 + + Xn.· · · 

Since P(Xi = 1) = 1/n and P(Xi = 0) = 1 − 1/n, the mean of Xi is 

1 1 1
E[Xi] = 1 + 0 1 − = ,· 

n 
· 

n n 

which implies that 

1
E[X] = E[X1] + E[X2] + + E[Xn] = n = 1.· · · · 

n 
In order to find the variance of X , we first find the variance and covariances 

of the random variables Xi. We have 

1 1 
var(Xi) = 1 − . 

n n 

1For more results on various extensions of the matching problem, see L.A. Zager and G.C. 
Verghese, “Caps and robbers: what can you expect?,” College Mathematics Journal, v. 38, n. 3, 
2007, pp. 185-191. 
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For i =� j, we have �� �� �� 
cov(Xi, Xj ) = E Xi − E[Xi] Xj − E[Xj ] 

= E[XiXj ] − E[Xi] E[Xj ] 
= P(Xi = 1 and Xj = 1) − P(Xi = 1)P(Xj = 1) 
= P(Xi = 1)P(Xj = 1 | Xi = 1) − P(Xi = 1)P(Xj = 1) 

1 1 1 
= 

2n 
· 
n − 1 

− 
n


1

= . 

n2(n − 1)

Therefore, 

n

var(X) = var Xi


i=1
�n n−1 n

= var(Xi) + 2 cov(Xi, Xj ) 
i=1 i=1 j=i+1 

= n 
1 1

+ 2 
n(n − 1) 1 · 

n 
1 − 

n 
· 

2 
· 
n2(n − 1) 

= 1. 

Finding the PMF of X is a little harder. Let us first dispense with some 
easy cases. We have P(X = n) = 1/n!, because there is only one (out of 
the n! possible) permutations under which every person receives their own hat. 
Furthermore, the event X = n − 1 is impossible: if n − 1 persons have received 
their own hat, the remaining person must also have received their own hat. 

Let us continue by finding the probability that X = 0. Let Ai be the event 
that the ith person gets their own hat, i.e., Xi = 1. Note that the event X = 0 
is the same as the event ∩iA

c. Thus, P(X = 0) = 1 − P(∪n
i=1Ai). Using the i 

inclusion-exclusion formula, we have 

P(∪n
i=1Ai) = P(Ai) − P(Ai ∩ Aj ) + P(Ai ∩ Aj ∩ Ak) + · · · . 

i i<j i<j<k 

Observe that for every fixed distinct indices i1, i2, . . . , ik, we have 

P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik ) = 
n 
1 · 

n − 
1

1 
· · · 

n − 
1 
k + 1 

= 
(n − 

n! 
k)! 

. (1) 
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Thus, 

1 n (n − 2)! n (n − 3)! n (n − n)!
P(∪i

n 
=1Ai) = n · 

n 
− 

2 n! 
+

3 n!
+ · · · + (−1)n 

n n! 
1 1 1

= 1 − 
2! 

+ 
3! 
− · · · + (−1)n+1 

n!
. 

We conclude that 

1 1 1
P(X = 0) = 

2! 
− 

3! 
+ · · · + (−1)n 

n!
. (2) 

Note that P(X = 0) → e−1, as n →∞. 
To conclude, let us now fix some integer r, with 0 < r ≤ n−2, and calculate 

P(X = r). The event {X = r} can only occur as follows: for some subset S of 
{1, . . . , n}, of cardinality r, the following two events, BS and CS , occur: 

BS : for every i ∈ S, person i receives their own hat; 

CS : for every i /∈ S, person i does not receive their own hat. 

We then have 

 
{X = r} = BS ∩ CS . 

S: |S|=r 

The events BS ∩ CS for different subsets S are disjoint. Furthermore, by sym­
metry, P(BS ∩ CS ) is the same for every S of cardinality r. Thus, 

P(X = r) = P(BS ∩ CS ) 
S: |S|=r 

n 
= 

r 
P(BS ) P(CS | BS ). 

Note that 

P(BS ) = 
(n − r)! 

, 
n! 

by the same argument as in Eq. (1). Conditioned on the event that the r persons 
in the set S have received their own hats, the event CS will materialize if and 
only if none of the remaining n − r persons receive their own hat. But this is 
the same situation as the one analyzed when we calculated the probability that 
X = 0, except that n needs to be replaced by n − r. We conclude that 

1 1 1 
P (CS | BS ) = 

2! 
− 

3! 
+ · · · + (−1)n−r 

(n − r)!
. 
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Putting everything together, we conclude that


n (n − r)!� 1 1 1 � 
P(X = r) = 

r n! 2! 
− 

3! 
+ · · · + (−1)n−r 

(n − r)! 
1 � 1 1 1 �


= 
r! 2! 

− 
3! 

+ · · · + (−1)n−r 

(n − r)! 
.


Note that for each fixed r, the probability P(X = r) converges to e−1/r!, 
as n → ∞, which corresponds to a Poisson distribution with parameter 1. An 
intuitive justification is as follows. The random variables Xi are not independent 
(in particular, their covariance is nonzero). On the other hand, as n → ∞, they 
are “approximately independent”. Furthermore, the success probability for each 
person is 1/n, and the situation is similar to the one in our earlier proof that the 
binomial PMF approaches the Poisson PMF. 

5 CONDITIONAL EXPECTATIONS 

We have already defined the notion of a conditional PMF, pX | Y ( · | y), given 
the value of a random variable Y . Similarly, given an event A, we can define a 
conditional PMF pX|A, by letting pX|A(x) = P(X = x | A). In either case, the 
conditional PMF, as a function of x, is a bona fide PMF (a nonnegative function 
that sums to one). As such, it is natural to associate a (conditional) expectation 
to the (conditional) PMF. 

Definition 1. Given an event A, such that P(A) > 0, and a discrete random 
variable X , the conditional expectation of X given A is defined as 

E[X | A] = xpX | A(x), 
x 

provided that the sum is well-defined. 

Note that the preceding also provides a definition for a conditional expecta­
tion of the form E[X | Y = y], for any y such that pY (y) > 0: just let A be the 
event {Y = y}, which yields 

E[X | Y = y] = 
� 

x 

xpX | Y (x | y). 

We note that the conditional expectation is always well defined when either 
the random variable X is nonnegative, or when the random variable X is inte­
grable. In particular, whenever E[|X|] < ∞, we also have E[|X| | Y = y] < ∞, 
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for every y such that pY (y) > 0. To verify the latter assertion, note that for 
every y such that pY (y) > 0, we have � � pX,Y (x, y) 1 � E[ X ]|x|pX|Y (x | y) = |x| 

pY (y) 
≤ 

pY (y) 
|x|pX (x) = 

pY 

|
(y
|
) 
. 

x x x 

The converse, however, is not true: it is possible that E[|X| | Y = y] is finite for 
every y that has positive probability, while E[|X|] = ∞. 

The conditional expectation is essentially the same as an ordinary expecta­
tion, except that the original PMF is replaced by the conditional PMF. As such, 
the conditional expectation inherits all the properties of ordinary expectations 
(cf. Proposition 4 in the notes for Lecture 6). 

5.1 The total expectation theorem 

A simple calculation yields � � � 

y 

E[X | Y = y]pY (y) = 
y x 

xpX|Y (x | y)pY (y) � � 
= xpX,Y (x, y) 

y x 

= E[X]. 

Note that this calculation is rigorous if X is nonnegative or integrable. 
Suppose now that {Ai} is a countable family of disjoint events that forms a 

partition of the probability space Ω. Define a random variable Y by letting Y = i 
if and only if Ai occurs. Then, pY (i) = P(Ai), and E[X | Y = i] = E[X | Ai], 
which yields � 

E[X] = E[X | Ai]P(Ai). 
i 

Example. (The mean of the geometric.) Let X be a random variable with parameter p, 
so that pX (k) = (1−p)k−1p, for p ∈ N. We first observe that the geometric distribution 
is memoryless: for k ∈ N, we have 

P(X − 1 = k | X > 1) = 
P(X = k + 1, X > 1) 

P(X > 1) 
P(X = k + 1) 

= 
P(X > 1) 

= 
(1

1
−
− 
p

p 
)kp 

= (1 − p)k−1 p 

= P(X = k). 
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In words, in a sequence of repeated i.i.d., trials, given that the first trial was a failure, 
the distribution of the remaining trials, X − 1, until the first success is the same as the 
unconditional distribution of the number of trials, X , until the first success. In particular, 
E[X − 1 | X > 1] = E[X]. 

Using the total expectation theorem, we can write 

E[X] = E[X | X > 1]P(X > 1)+E[X | X = 1]P(X = 1) = (1+E[X])(1−p)+1 ·p. 

We solve for E[X], and find that E[X] = 1/p. 
Similarly, 

E[X2] = E[X2 | X > 1]P(X > 1) + E[X2 | X = 1]P(X = 1). 

Note that 

E[X2 | X > 1] = E[(X −1)2 | X > 1]+E[2(X −1)+1 | X > 1] = E[X2]+(2/p)+1. 

Thus, 
E[X2] = (1 − p)(E[X2] + (2/p) + 1) + p, 

which yields 
2 1

E[X2] = 
p2 
− 

p
. 

We conclude that 

var(X) = E[X2] − 
� 
E[X] 

�2 = 
p

2 
2 
− 

1 
p 
− 

p

1 
2 

=
1 
p

−
2 

p
. 

Example. Suppose we flip a biased coin N times, independently, where N is a Poisson 
random variable with parameter λ. The probability of heads at each flip is p. Let X be 
the number of heads, and let Y be the number of tails. Then, 

n � �∞ � n
E[X | N = n] = mP(X = m | N = n) = m

m
p m(1 − p)n−m . 

m=0 m=0 

But X is just the expected number of heads in n trials, so that E[X | N = n] = np. 
Let us now calculate E[N | X = m]. We have 

∞

E[N | X = m] = 
n=0 

nP(N = n | X = m) 

∞ P(N = m)� = n, X 
= n 

P(X = m)
n=m 

= 
∞

n 
P(X = m | N = n)P(N = n) 

P(X = m)
n=m 

n�∞ pm(1 − p)n−m(λn/n!)e−λ 

= n m .
P(X = m)

n=m 
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Recall that X = 
d Pois(λp), so that P(X = m) = e−λp(λp)m/m!. Thus, after some 

cancellations, we obtain � e−λ(1−p) 

E[N X = m] = 
∞

n 
(1 − p)n−mλn−m

| 
(n − m)!

n=m 

= 
∞

(n − m)
(1 − p)n−mλn−me−λ(1−p) 

(n − m)!
n=m � e−λ(1−p)∞ (1 − p)n−mλn−m

+ m 
(n − m)!

n=m 

= λ(1 − p) + m. 

A faster way of obtaining this result is as follows. From Theorem 3 in the notes for 
Lecture 6, we have that X and Y are independent, and that Y is Poisson with parameter 
λ(1 − p). Therefore, 

E[N | X = m] = E[X | X = m] + E[Y | X = m] = m + E[Y ] = m + λ(1 − p). 

5.2 The conditional expectation as a random variable 

Let X and Y be two discrete random variables. For any fixed value of y, the 
expression E[X | Y = y] is a real number, which however depends on y, and 
can be used to define a function φ : R → R, by letting φ(y) = E[X | Y = y]. 
Consider now the random variable φ(Y ); this random variable takes the value 
E[X | Y = y] whenever Y takes the value y, which happens with probability 
P(Y = y). This random variable will be denoted as E[X | Y ]. (Strictly speak­
ing, one needs to verify that this is a measurable function, which is left as an 
exercise.) 

Example. Let us return to the last example and find E[X | N ] and E[N | X]. We found 
that E[X | N = n] = np. Thus E[X | N ] = Np, i.e., it is a random variable that takes 
the value np with probability P(N = n) = (λn/n!)e−λ . We found that E[N | X = 
m] = λ(1 − p) + m. Thus E[N | X] = λ(1 − p) + X . 

Note further that 

E[E[X | N ]] = E[Np] = λp = E[X], 

and 
E[E[N | X]] = λ(1 − p) + E[X] = λ(1 − p) + λp = λ = E[N ]. 

This is not a coincidence; the equality E[E[X | Y ]] = E[X] is always true, as we shall 
now see. In fact, this is just the total expectation theorem, written in more abstract 
notation. 
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Theorem 2. Let g : R R be a measurable function such that Xg(Y ) is→
either nonnegative or integrable. Then, 

E E[X | Y ]g(Y ) = E[Xg(Y )]. 

In particular, by letting g(y) = 1 for all y, we obtain E[E[X|Y ]] = E[X]. 

Proof: We have 

E E[X|Y ]g(Y ) = E[X | Y = y]g(y)pY (y) 
y 

= xpX|Y (x | y)g(y)pY (y) 
y x 

= xg(y)pX,Y (x, y) = E[Xg(Y )]. 
x,y 

The formula in Theorem 2 can be rewritten in the form 

E (E[X | Y ] − X)g(Y ) = 0. (3) 

Here is an interpretation. We can think of E[X | Y ] as an estimate of X , on the 
basis of Y , and E[X | Y ] − X as an estimation error. The above formula says 
that the estimation error is uncorrelated with every function of the original data. 

Equation (3) can be used as the basis for an abstract definition of conditional 
expectations. Namely, we define the conditional expectation as a random vari­
able of the form φ(Y ), where φ is a measurable function, that has the property 

E (φ(Y ) − X)g(Y ) = 0, 

for every measurable function g. The merits of this definition is that it can 
be used for all kinds of random variables (discrete, continuous, mixed, etc.). 
However, for this definition to be sound, there are two facts that need to be 
verified: 

(a) Existence: It turns out that as long as X is integrable, a function φ with the 
above properties is guaranteed to exist. We already know that this is the 
case for discrete random variables: the conditional expectation as defined in 
the beginning of this section does have the desired properties. For general 
random variables, this is a nontrivial and deep result. It will be revisited 
later in this course. 
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(b) Uniqueness: It turns out that there is essentially only one function φ with 
the above properties. More precisely, any two functions with the above 
properties are equal with probability 1. 
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