
� 

� 

1 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.436J/15.085J Fall 2008 
Lecture 8 10/1/2008 

CONTINUOUS RANDOM VARIABLES


Contents 

1. Continuous random variables 

2. Examples 

3. Expected values 

4. Joint distributions 

5. Independence 

Readings: For a less technical version of this material, but with more discussion 
and examples, see Sections 3.1-3.5 of [BT] and Sections 4.1-4.5 of [GS]. 

CONTINUOUS RANDOM VARIABLES 

Recall1 that a random variable X : Ω R is said to be continuous if its CDF →
can be written in the form 

x 

P(X ≤ x) = FX (x) = fX (t)dt, 
−∞ 

for some nonnegative measurable function f : R → [0, ∞), which is called the 
PDF of X . We then have, for any Borel set B, 

P(X ∈ B) = fX (x) dx. 
B 

Technical remark: Since we have not yet defined the notion of an integral of 
a measurable function, the discussion in these notes will be rigorous only when 
we deal with integrals that can be interpreted in the usual sense of calculus, 

1The reader should revisit Section 4 of the notes for Lecture 5. 
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namely, Riemann integrals. For now, let us just concentrate on functions that are 
piecewise continuous, with a finite number of discontinuities. 

We note that fX should be more appropriately called “a” (as opposed to 
“the”) PDF of X , because it is not unique. For example, if we modify fX at a 
finite number of points, its integral is unaffected, so multiple densities can corre­
spond to the same CDF. It turns out, however, that any two densities associated 
with the same CDF are equal except on a set of Lebesgue measure zero. 

A PDF is in some ways similar to a PMF, except that the value fX (x) cannot 
be interpreted as a probability. In particular, the value of fX (x) is allowed to 
be greater than one for some x. Instead, the proper intuitive interpretation is the 
fact that if fX is continuous over a small interval [x, x + δ], then 

P(x ≤ X ≤ x + δ) ≈ fX (x)δ. 

Remark: The fact that a random variable X is continuous has no bearing on the 
continuity of X as a function from Ω into R. In fact, we have not even defined 
what it means for a function on Ω to be continuous. But even in the special case 
where Ω = R, we can have a discontinuous function X : R R which is a →
continuous random variable. Here is an example. Let the underlying probability 
measure on Ω be the Lebesgue measure on the unit interval. Let 

ω, 0 ≤ ω ≤ 1/2,
X(ω) = 

1 + ω, 1/2 < ω ≤ 1. 

The function X is discontinuous. The random variable X takes values in the set 
[0, 1/2] ∪ (3/2, 2]. Furthermore, it is not hard to check that X is a continuous 
random variable with PDF given by 

fX (x) = 
1, x ∈ [0, 1/2] ∪ (3/2, 2] 
0 otherwise. 

EXAMPLES 

We present here a number of important examples of continuous random vari­
ables. 
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2.1 Uniform 

This is perhaps the simplest continuous random variable. Consider an interval 
[a, b], and let ⎧ ⎨ 0, x ≤ a, 

FX (x) = ⎩ 
(x − a)/(b − a), a < x ≤ b, 
1, x > b. 

It is easy to check that FX satisfies the required properties of CDFs. We de­
note this distribution by U(a, b). We find that a corresponding PDF is given 
by fX (x) = (dFX /dx)(x) = 1 for x ∈ [a, b], and fX (x) = 0, otherwise. b−a 
When [a, b] = [0, 1], the probability law of a uniform random variable is just the 
Lebesgue measure on [0, 1]. 

2.2 Exponential 

Fix some λ > 0. Let FX (x) = 1 − e−λx, for x ≥ 0, and FX (x) = 0, for 
x < 0. It is easy to check that FX satisfies the required properties of CDFs. 
A corresponding PDF is fX (x) = λe−λx, for x ≥ 0, and fX (x) = 0, for 
x < 0. We denote this distribution by Exp(λ). The exponential distribution 
can be viewed as a “limit” of a geometric distribution. Indeed, if we fix some δ 
and consider the values of FX (kδ), for k = 1, 2, . . ., these values agree with the 
values of a geometric CDF. Intuitively, the exponential distribution corresponds 
to a limit of a situation where every δ time units, we toss a coin whose success 
probability is λδ, and let X be the time elapsed until the first success. 

The distribution Exp(λ) has the following very important memorylessness 
property. 

Theorem 1. Let X be an exponentially distributed random variable. Then, 
for every x, t ≥ 0, we have P(X > x + t | X > x) = P(X > t). 

Proof: Let X be exponential with parameter λ. We have 

P(X > x + t, X > x) P(X > x + t)
P(X > x + t | X > x) = 

P(X > x)
= 

P(X > x) 

e−λ(x+t) 

= 
e−λx = e−λt = P(X > t). 

Exponential random variables are often used to model memoryless arrival 
processes, in which the elapsed waiting time does not affect our probabilistic 
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model of the remaining time until an arrival. For example, suppose that the 
time until the next bus arrival is an exponential random variable with parameter 
λ = 1/5 (in minutes). Thus, there is probability e−1 that you will have to wait 
for at least 5 minutes. Suppose that you have already waited for 10 minutes. The 
probability that you will have to wait for at least another five minutes is still the 
same, e−1 . 

2.3 Normal distribution 

Perhaps the most widely used distribution is the normal (or Gaussian) distribu­
tion. It involves parameters µ ∈ R and σ > 0, and the density 

fX (x) = 
σ
√1

2π
e− (x

2

−
σ

µ
2
)2 

. 

It can be checked that this is a legitimate PDF, i.e., that it integrates to one. Note 
also that this PDF is symmetric around x = µ. We use the notation N(µ, σ2) to 
denote the normal distribution with parameters µ, σ. The distribution N(0, 1) is 
referred to as the standard normal distribution; a corresponding random vari­
able is also said to be standard normal. 

There is no closed form formula for the corresponding CDF, but numerical 
tables are available. These tables can also be used to find probabilities associated 
with general normal variables. This is because of the fact (to be verified later) 
that if X ∼ N(µ, σ2), then (X − µ)/σ ∼ N(0, 1). Thus, 

P(X ≤ c) = P 
�X

σ 
− µ ≤ 

c − 
σ

µ � 
= Φ((c − µ)/σ), 

where Φ is the CDF of the standard normal, available from the normal tables. 

2.4 Cauchy distribution 

Here, fX (x) = 1/(π(1 + x2)), x ∈ R. It is an exercise in calculus to show that 
∞ 

f(t)dt = 1, so that fX is indeed a PDF. The corresponding distribution is −∞
called a Cauchy distribution. 

2.5 Power law 

We have already defined discrete power law distributions. We present here a 
continuous analog. Our starting point is to introduce tail probabilities that decay 
according to power law: P(X > x) = β/xα, for x ≥ c > 0, for some parame­
ters α, c > 0. In this case, the CDF is given by FX (x) = 1 − β/xα , x ≥ c, and 
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FX (x) = 0, otherwise. In order for X to be a continuous random variable, FX 

cannot have a jump at x = c, and we therefore need β = cα. The corresponding 
density is of the form 

dFX αcα 

fX (t) = (t) = . 
dx tα+1 

3 EXPECTED VALUES 

Similar to the discrete case, given a continuous random variable X with PDF 
fX , we define 

∞
E[X] = xfX (x) dx. 

−∞ 

This integral is well defined and finite if ∞ 
x fX (x) dx < ∞, in which case −∞ | |

we say that the random variable X is integrable. The integral is also well de­� 0fined, but infinite, if one, but not both, of the integrals xfX (x) dx and� −∞∞
xfX (x) dx is infinite. If both of these integrals are infinite, the expected 0 

value is not defined. 
Practically all of the results developed for discrete random variables carry 

over to the continuous case. Many of them, e.g., E[X + Y ] = E[X] + E[Y ], 
have the exact same form. We list below two results in which sums need to be 
replaced by integrals. 

Proposition 1. Let X be a nonnegative random variable, i.e., P(X < 0) = 0. 
Then 

∞
E[X] = (1 − FX (t)) dt. 

0 

Proof: We have 
∞ ∞ ∞ ∞

(1 − FX (t)) dt = P(X > t) dt = fX (x) dx dt

0 0 0 t


∞ x ∞ 

= fX (x) dt dx = xfX (x) dx = E[X]. 
0 0 0 

(The interchange of the order of integration turns out to be justified becuase the 
integrand is nonnegative.) 
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Proposition 2. Let X be a continuous random variable with density fX , and 
suppose that g : R R is a (Borel) measurable function such that g(X) is→
integrable. Then, 

∞
E[g(X)] = g(t)fX (t) dt. 

−∞ 

Proof: Let us express the function g as the difference of two nonnegative func­
tions, 

g(x) = g +(x) − g−(x), 

where g+(x) = max{g(x), 0}, and g−(x) = max{−g(x), 0}. In particular, for 
any t ≥ 0, we have g(x) > t if and only if g+(x) > t. 

We will use the result � � ∞ � � ∞ � � 
E g(X) = P g(X) > t dt − P g(X) < −t dt 

0 0 

from Proposition 1. The first term in the right-hand side is equal to 
∞ ∞ ∞ 

fX (x) dx dt = fX (x) dt dx = g +(x)fX (x) dx. 
0 {x|g(x)>t} −∞ {t|0≤t<g(x)} −∞ 

By a symmetrical argument, the second term in the right-hand side is given by 
∞ � � ∞

P g(X) < −t dt = g−(x)fX (x) dx. 
0 −∞ 

Combining the above equalities, we obtain � � ∞ ∞ ∞
E g(X) = g +(x)fX (x) dx − g−(x)fX (x) dx = g(x)fX (x) dx. 

−∞ −∞ −∞ 

Note that for this result to hold, the random variable g(X) need not be con­
tinuous. The proof is similar to the one for Proposition 1, and involves an in­
terchange of the order of integration; see [GS] for a proof for the special case 
where g ≥ 0. 

4 JOINT DISTRIBUTIONS 

Given a pair of random variables X and Y , defined on the same probability 
space, we say that they are jointly continuous if there exists a measurable2 

2Measurability here means that for every Borel subset of R, the set f−1(B) is a Borel subset 
of R2. The Borel σ-field in R2 is the one generated by sets of the form [a, b] × [c, d]. 
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fX,Y : R2 → [0, ∞) such that their joint CDF satisfies 

x y 

FX,Y (x, y) = P(X ≤ x, Y ≤ y) = fX,Y (u, v) du dv. 
−∞ −∞ 

The function fX,Y is called the joint CDF of X and Y . 
At those points where the joint PDF is continuous, we have 

∂2F 
(x, y) = fX,Y (x, y). 

∂x∂y 

Similar to what was mentioned for the case of a single random variable, for 
any Borel subset B of R2 , we have 

P (X, Y ) ∈ B = fX,Y (x, y) dx dy = IB(x, y)fX,Y (x, y) dx dy. 
B R2 

Furthermore, if B has Lebesgue measure zero, then P(B) = 0.3 

We observe that 
x ∞

P(X ≤ x) = fX,Y (u, v) du dv. 
−∞ −∞ 

Thus, X itself is a continuous random variable, with marginal PDF 

∞
fX (x) = fX,Y (x, y) dy. 

−∞ 

We have just argued that if X and Y are jointly continuous, then X (and, 
similarly, Y ) is a continuous random variables. The converse is not true. For a 
trivial counterexample, let X be a continuous random variable, and let and Y = 
X . Then the set {(x, y) ∈ R2 | x = y} has zero area (zero Lebesgue measure), 
but unit probability, which is impossible for jointly continuous random variables. 
In particular, the corresponding probability law on R2 is neither discrete nor 
continuous, hence qualifies as “singular.” 

Proposition 2 has a natural extension to the case of multiple random vari­
ables. 

3The Lebesgue measure on R2 is the unique measure µ defined on the Borel subsets of R2 

that satisfies µ([a, b] × [c, d]) = (b − a)(d − c), i.e., agrees with the elementary notion of “area” 
on rectangular sets. Existence and uniqueness of such a measure is obtained from the Extension 
Theorem, in a manner similar to the one used in our construction of the Lebesgue measure on R. 
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Proposition 3. Let X and Y be jointly continuous with PDF fX,Y , and sup­
pose that g : R2 R is a (Borel) measurable function such that g(X) is→
integrable. Then, 

∞ ∞
E[g(X, Y )] = g(u, v)fX,Y (u, v) du dv. 

−∞ −∞ 

INDEPENDENCE 

Recall that two random variables, X and Y , are said to be independent if for any 
two Borel subsets, B1 and B2, of the real line, we have P(X ∈ B1, Y ∈ B2) = 
P(X ∈ B1)P(Y ∈ B2). 

Similar to the discrete case (cf. Proposition 1 and Theorem 1 in Section 3 of 
Lecture 6), simpler criteria for independence are available. 

Theorem 2. Let X and Y be jointly continuous random variables defined on 
the same probability space. The following are equivalent. 

(a) The random variables X and Y are independent. 

(b) For any x, y ∈ R, the events {X ≤ x} and {Y ≤ y} are independent. 

(c) For any x, y ∈ R, we have FX,Y (x, y) = FX (x)FY (y). 

(d) If fX , fY , and fX,Y are corresponding marginal and joint densities, then 
fX,Y (x, y) = fX (x)fY (y), for all (x, y) except possibly on a set that has 
Lebesgue measure zero. 

The proof parallels the proofs in Lecture 6, except for the last condition, 
for which the argument is simple when the densities are continuous functions 
(simply differentiate the CDF), but requires more care otherwise. 
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