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1 REVIEW OF JOINT DISTRIBUTIONS 

Recall that two random variables X and Y are said to be jointly continuous if 
there exists a nonnegative measurable function fX,Y such that 

x y 

P(X ≤ x, Y ≤ y) = fX,Y (u, v) dv du. 
−∞ −∞ 

Once we have in our hands a general definition of integrals, this can be used to 
establish that for every Borel subset of R2, we have 

P((X,Y ) ∈ B) = fX,Y (u, v) du dv. 
B 

Furthermore, X is itself a continuous random variable, with density fX given 
by 

∞ 

fX (x) = fX,Y (x, y) dy. 
−∞ 

Finally, recall that E[g(X)] = g(x)fX (x) dx. Similar to the discrete 
case, the expectation of g(X) = Xm and g(X) = (X − E[X])m is called 
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the mth moment and the mth central moment, respectively, of X . In particular, 
var(X) � E[(X − E[X])2] is the variance of X . 

The properties of expectations developed for discrete random variables in 
Lecture 6 (such as linearity) apply to the continuous case as well. The sub­
sequent development, e.g., for the covariance and correlation, also applies to 
the continuous case, practically without any changes. The same is true for the 
Cauchy-Schwarz inequality. 

Finally, we note that all of the definitions and formulas have obvious exten­
sions to the case of more than two random variables. 

2 CONDITIONAL PDFS 

For the case of discrete random variables, the conditional CDF is defined by 
FX|Y (x | y) = P(X ≤ x | Y = y), for any y such that P(Y = y) > 0. However, 
this definition cannot be extended to the continuous case because P(Y = y) = 0, 
for every y. Instead, we should think of FX|Y (x | y) as a limit of P(X ≤ x | y ≤
Y ≤ y + δ), as δ decreases to zero. Note that 

FX|Y (x | y) ≈ P(X ≤ x | y ≤ Y ≤ y + δ) 
P(X ≤ x, y ≤ Y ≤ y + δ)

= 
P(y ≤ Y ≤ y + δ) 

x y+δ 
fX,Y (u, v) dv du 

≈ −∞ y 

δfY (y) 
δ x 

fX,Y (u, y) du 
≈ −∞ 

δfY (y) 
x 

fX,Y (u, y) du 
= −∞ . 

fY (y) 

The above expression motivates the following definition. 
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Definition 1. (a) The conditional CDF of X given Y is defined by


x fX,Y (u, y)
FX|Y (x | y) = 

−∞ fY (y) 
du, 

for every y such that fY (y) > 0, where fY is the marginal PDF of Y . 

(b) The conditional PDF of X given Y is defined by 

fX,Y (x, y)
fX|Y (x | y) = 

fY (y) 
, 

for every y such that fY (y) > 0. 

(c) The conditional expectation of X given Y = y is defined by 

E[X | Y = y] = xfX|Y (x | y)dx, 

for every y such that fY (y) > 0. 

(d) The conditional probability of the event {X ∈ A}, given Y = y, is defined 
by 

P(X ∈ A | Y = y) = 
A 
fX|Y (x | y)dx, 

for every y such that fY (y) > 0. 

It can be checked that FX | Y is indeed a CDF (it satisfies the required prop­
erties such as monotonicity, right-continuity, etc.) For example, observe that 

lim FX|Y (x | y) = 
∞ fX,Y (u, y) 

du = 1, 
x→∞ −∞ fY (y) 

since the integral of the numerator is exactly fY (y). 
Finally, we note that 

E[X] = E[X | Y = y]fY (y) dy, 

and � 
P(X ∈ A) = P(X ∈ A | Y = y)fY (y) dy. 
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These two relations are established as in the discrete case, by just replacing sum­
mations with integrals. They can be rigorously justified if the random variable 
X is nonnegative or integrable. 

3 THE BIVARIATE NORMAL DISTRIBUTION 

Let us fix some ρ ∈ (−1, 1) and consider the function, called the standard 
bivariate normal PDF, 

1 � x2 − 2ρxy + y2 � 
f(x, y) = 

2π 
� exp − 

2(1 − ρ2) 
. 

1 − ρ2 

Let X and Y be two jointly continuous random variables, defined on the same 
probability space, whose joint PDF is f . 

Proposition 1. (a) The function f is a indeed a PDF (integrates to 1). 

(b) The marginal density of X and Y is N(0, 1), the standard normal PDF. 

(c) We have ρ(X,Y ) = ρ. Also, X and Y are independent iff ρ = 0. 

(d) The conditional density of X , given Y = y, is N(ρy, 1 − ρ2). 

(x−µ)2 
Proof: We will use repeatedly the fact that 1/(

√
2πσ) exp(−

2σ2 ) is a PDF

(namely, the PDF of the N(µ, σ2) distribution), and thus integrates to one.


(a)-(b) We note that x2 − 2ρxy + y2 = x2 − 2ρxy + ρ2y2 + (1 − ρ2)y2, and 
obtain � exp (1−ρ2)y2 � � �∞ − 

2(1−ρ2) ∞ (x − ρy)2 

fY (y) = f(x, y)dx =
2π 

� exp − 
2(1 − ρ2) 

dx 
−∞ 1 − ρ2 −∞ 

exp(−y2/2) 
� ∞ � (x − ρy)2 � 

= � exp dx 
2π 1 − ρ2 

− 
2(1 − ρ2)−∞ 

But we recognize 

1 
� ∞ � (x − ρy)2 � � exp dx 

2π(1 − ρ2) 
− 

2(1 − ρ2)−∞ 

as the PDF of the N(ρy, 1 − ρ2) distribution. Thus, the integral of this 
density equals one, and we obtain 

exp(−y2/2)
fY (y) = ,√

2π 
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which is the standard normal PDF. Since ∞ 
fY (y) dy = 1, we conclude −∞

that f(x, y) integrates to one, and is a legitimate joint PDF. Furthermore, 
we have verified that the marginal PDF of Y (and by symmetry, also the 
marginal PDF of X) is the standard normal PDF, N(0, 1). 

(c) We have Cov(X,Y ) = E[XY ] − E[X]E[Y ] = E[XY ], since X and Y 
are standard normal, and therefore have zero mean. We now have 

E[XY ] = xyf(x, y) dy dx. 

Applying the same trick as above, we obtain for every y, 

xf(x, y)dx = 
exp(�−y2/2) ∞ 

x exp 
(x − ρy)2 

dx. 
2π 1 − ρ2 

− 
2(1 − ρ2)−∞ 

But 

1 
� ∞ � (x − ρy)2 � � x exp dx = ρy, 

2π(1 − ρ2) −∞ 
− 

2(1 − ρ2) 

since this is the expected value for the N(ρy, 1 − ρ2) distribution. Thus, 

E[XY ] = xyf(x, y) dx dy = yρyfY (y) dy = ρ y 2fY (y) dy = ρ, 

since the integral is the second moment of the standard normal, which 
is equal to one. We have established that Cov(X,Y ) = ρ. Since the 
variances ofX and Y are equal to unity, we obtain ρ(X,Y ) = ρ. If X and 
Y are independent, then ρ(X,Y ) = 0, implying that ρ = 0. Conversely, 
if ρ = 0, then 

1 � x2 + y2 � 
f(x, y) = 

2π 
exp − 

2
= fX (x)fY (y), 

and therefore X and Y are independent. Note that the condition ρ(X,Y ) = 
0 implies independence, for the special case of the bivariate normal, whereas 
this implication is not always true, for general random variables. 

(d) Let us now compute the conditional PDF. Using the expression for fY (y), 
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we have 

fX|Y (x y) = 
f(x, y)| 
fY (y) 

= � 
1 

exp 
� x2 − 2ρxy + y2 �√

2π exp(y 2/2)
2π 1 − ρ2 

− 
2(1 − ρ2) 

1 � x2 − 2ρxy + ρ2y2 � 
= � exp

2π(1 − ρ2) 
− 

2(1 − ρ2) 

1 � (x − ρy)2 � 
= � exp ,

2π(1 − ρ2) 
− 

2(1 − ρ2) 

which we recognize as the N(ρy, 1 − ρ2) PDF. 

We have discussed above the special case of a bivariate normal PDF, in 
which the means are zero and the variances are equal to one. More generally, 
the bivariate normal PDF is specified by five parameters, µ1, µ2, σ1, σ2, ρ, and 
is given by 

1 � 1 � 
f(x, y) = � exp Q(x, y) ,

2πσ1σ2 1 − ρ2 
− 

2

where 

Q(x, y) = 
1 − 

1 
ρ2 

�(x − 
σ2 

µ1)2 

− 2ρ
(x − 
σ1 

µ1) (y − 
σ2 

µ2) +
(y − 

σ2 

µ2)2 � 
. 

1 2 

For this case, it can be verified that 

E[X] = µ1, var(X) = σ1
2 , E[Y ] = µ2, var(Y ) = σ2

2 , ρ(X,Y ) = ρ. 

These properties can be derived by extending the tedious calculations in the 
preceding proof. 

There is a further generalization to more than two random variables, re­
sulting in the multivariate normal distribution. It will be carried out in a more 
elegant manner in a later lecture. 

4 CONDITIONAL EXPECTATION AS A RANDOM VARIABLE 

Similar to the discrete case, we define E[X | Y ] as a random variable that takes 
the value E[X | Y = y], whenever Y = y, where fY (y) > 0. Formally, E[X | Y ] 
is a function ψ : Ω R that satisfies → � 

ψ(ω) = xfX|Y (x | y) dx, 

6 



� � 

� � 

for every ω such that Y (ω) = y, where fY (y) > 0. Note that nothing is said 
about the value of ψ(ω) for those ω that result in a y at which fY (y) = 0. 
However, the set of such ω has zero probability measure. Because, the value 
of ψ(ω) is completely determined by the value of Y (ω), we also have ψ(ω) = 
φ(Y (ω)), for some function φ : R R. It turns out that both functions ψ and→
φ can be taken to be measurable. 

One might expect that when X and Y are jointly continuous, then E[X | Y ] 
is a continuous random variable, but this is not the case. To see this, suppose 
that X and Y are independent, in which case E[X | Y = y] = E[X], which also 
implies that E[X | Y ] = E[X]. Thus, E[X | Y ] takes a constant value, and is 
therefore a trivial case of a discrete random variable. 

Similar to the discrete case, for every measurable function g, we have 

E E[X | Y ]g(Y ) = E[Xg(Y )] (1) 

(assuming all expectations involved to be well-defined). The proof is essentially 
the same, with integrals replacing summations. In fact, this property can be 
taken as a more abstract definition of the conditional expectation. By letting g 
be identically equal to 1, we obtain 

E E[X | Y ] = E[X]. 

Example. We have a stick of unit length [0, 1], and break it at X , where X is uniformly 
distributed on [0, 1]. Given the value x of X , we let Y be uniformly distributed on [0, x], 
and let Z be uniformly distributed on [0, 1 − x]. We assume that conditioned on X = x, 
the random variables Y and Z are independent. We are interested in the distribution of 
Y and Z, their expected values, and the expected value of their product. 

It is clear from symmetry that Y and Z have the same marginal distribution, so we 
focus on Y . Let us first find the joint distribution of Y and X . We have fX (x) = 1, for 
x ∈ [0, 1], and fY |X (y | x) = 1/x, for y ∈ [0, x]. Thus, the joint PDF is 

1 1 
fX,Y (x, y) = fY |X (y | x)fX (x) = 1 = , 0 ≤ y ≤ x ≤ 1. 

x 
· 

x 

We can now find the PDF of Y : � 1 � 1 1 ��1 
fY (y) = fX,Y (x, y) dx = dx = log x� = log(1/y). 

y y x y 

(check that this indeed integrates to unity). Integrating by parts, we then obtain � 1 � 1 1
E[Y ] = yfY (y)dy = y log(1/y) dy = .

40 0 
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The above calculation is more involved than necessary. For a simpler argument, 
simply observe that E[Y | X = x] = x/2, since Y conditioned on X = x is uniform on 
[0, x]. In particular, E[Y | X] = X/2. It follows that E[Y ] = E[E[Y | X]] = E[X/2] = 
1/4. 

For an alternative version of this argument, consider the random variable Y/X . 
Conditioned on the event X = x, this random variable takes values in the range [0, 1], 
is uniformly distributed on that range, and has mean 1/2. Thus, the conditional PDF of 
Y/X is not affected by the value x of X . This implies that Y/X is independent of X , 
and we have 

1 1 1
E[Y ] = E[(Y/X)X] = E[Y/X] E[X] = = .· 

2 
· 
2 4 

To find E[Y Z] we use the fact that, conditional on X = x, Y and Z are independent, 
and obtain 

E[Y Z] = E E[Y Z | X] = E E[Y | X] · E[Z | X] � � � 1X 1 − X x(1 − x) 1 
= E = dx = .

2 
· 

2 0 4 24 

Exercise 1. Find the joint PDF of Y and Z. Find the probability P(Y + Z ≤ 1/3). 
Find E[X|Y ], E[X|Z], and ρ(Y, Z). 

4.1 Optimality properties of conditional expectations 

The conditional expectation E[X | Y ] can be viewed as an estimate of X , based 
on the value of Y . In fact, it is an optimal estimate, in the sense that the mean 
square of the resulting estimation error, X − E[X | Y ], is as small as possible. 

Theorem 1. Suppose that E[X2] < ∞. Then, for any measurable function 
g : R R, we have → 

E (X − E[X | Y ])2 ≤ E (X − g(Y ))2 . 

Proof: We have � �	 � � � 
E (X − g(Y ))2 =	 E[(X − E[X | Y ])2 + E (E[X | Y ] − g�(Y ))2

+E[(X − E[X Y ])(E[X Y ] − g(Y )) 
≥ E[(X − E[X | Y ])2 . 

The inequality above is obtained by noticing that the term E (X − g(Y ))2 is 
always nonnegative, and that the term E[(X − E[X | Y ])(E[X | Y ] − g(Y )) 
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is of the form E[(X − E[X | Y ])ψ(Y ) for ψ(Y ) = E[X | Y ] − g(Y ), and is 
therefore equal to zero, by Eq. (1). 

Notice that the preceding proof only relies on the property (1). As we have 
discussed, we can view this as the defining property of conditional expectations, 
for general random variables. It follows that the preceding theorem is true for 
all kinds of random variables. 

5 MIXED VERSIONS OF BAYES’ RULE 

Let X be an unobserved random variable, with known CDF, FX . We observe 
the value of a related random variable, Y , whose distribution depends on the 
value of X . This dependence can be captured by a conditional CDF, FY |X . 
On the basis of the observed value y of Y , would like to make an inference on 
the unknown value of X . While sometimes, this inference aims at a numerical 
estimate for X , the most complete answer, which includes everything that can 
be said about X , is the conditional distribution of X , given Y . This conditional 
distribution can be obtained by using an appropriate form of Bayes’ rule. 

When X and Y are both discrete, Bayes’ rule takes the simple form 

pX|Y (x | y) = 
pX (x)

p

p

Y

Y 

(
|

y

X 

)
(y | x)

= � 
x

p

� 

X 

pX 

(x
(
)
x

p
�
Y 

)p
|X

Y 

(

|X 

y 

(
| 
y

x

| 
) 
x�)

. 

When X and Y are both continuous, Bayes’ rule takes a similar form, 

fX|Y (x | y) = 
fX (x)

f

f

Y

Y 

(
|

y

X 

)
(y | x)

= � 
f

f

X

X 

(x
(x
�)
)
f

f

Y

Y 

|

|

X

X 

(
(
y

y | 
x

x
�
)
) dx

, 
| 

which follows readily from the definition of the conditional PDF. 
It remains to consider the case where one random variable is discrete and 

the other continuous. Suppose that K is a discrete random variable and Z is a 
continuous random variable. We describe their joint distribution in terms of a 
function fK,Z (k, z) that satisfies 

z 

P(K = k, Z ≤ z) = fK,Z (k, t) dt. 
−∞ 

We then have 
∞ 

pK (k) = P(K = k) = fK,Z (k, t) dt, 
−∞ 
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and1 

� z z � 
FZ (z) = P(Z ≤ z) = fK,Z (k, t) dz = fK,Z (k, t) dz, 

k −∞ −∞ k 

which implies that � 
fZ (z) = fK,Z (k, z), 

k 

is the PDF of Z. 
Note that if P(K = k) > 0, then 

z fK,Z (k, t)P(Z ≤ z | K = k) = 
pK (k) 

dt, 
−∞ 

and therefore, it is reasonable to define 

fZ|K (z | k) = fK,Z (k, z)/pK (k). 

Finally, for z such that fZ (z) > 0, we define pK|Z (k | z) = fK,Z (k, z)/fZ (z), 
and interpret it as the conditional probability of the event K = k, given that 
Z = z. (Note that we are conditioning on a zero probability event; a more accu­
rate interpretation is obtained by conditioning on the event z ≤ Z ≤ z + δ, and 
let δ 0.) With these definitions, we have → 

fK,Z (k, z) = pK (k)fZ|K (z | k) = fZ (z)pK|Z (k | z), 

for every (k, z) for which fK,Z (k, z) > 0. By rearranging, we obtain two more 
versions of the Bayes’ rule: 

fZ|K (z | k) = 
fZ (z)

p

p

K

K

(
|

k

Z 

)
(k | z)

= � 
fZ 

fZ 

(z
(
�
z

)
)
p

p

K

K

|Z 

|Z 

(
(
k

k 

|
| 
z

z
�)
) 
dz� 

, 

and 

pK|Z (k z) = 
pK (k)fZ|K (z | k) = � 

pK (k)fZ|k(z | k) 
.| 

fZ (z) k� pK (k�)fZ|K (z | k�)

Note that all four versions of Bayes’ rule take the exact same form; the only 
difference is that we use PMFs and summations for discrete random variables, 
as opposed to PDFs and integrals for continuous random variables. 

1The interchange of the summation and the integration can be rigorously justified, because the 
terms inside are nonnegative. 
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