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ABSTRACT INTEGRATION — II
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In the previous lecture: 

(a) We defined the notion of an integral of a measurable function with respect 
to a measure ( g dµ), which subsumes the special case of expectations 
(E[X] = X dP), where X is a random variable, and P is a probability 
measure. 

(b) We saw that integrals are always well-defined, though possibly infinite, if 
the function being integrated is nonnegative. 

(c) For a general function g, we decompose it as the sum g = g+ − g− of a 
positive and a negative function, and integrate each piece separately. The 
integral is well defined unless both g+ dµ and g− dµ happen to be infi­
nite. 

(d) We saw that integrals obey a long list natural properties, including linearity:
(g + h) dµ = g dµ + h dµ. 

(e) We stated the Monotone Convergence Theorem (MCT), according to which, 
if {gn} is a nondecreasing sequence of nonnegative measurable functions 
that converge pointwise to a function g, then limn→∞ gn dµ = g dµ. 

(f) Finally, we saw that for every nonnegative measurable function g, we can 
find an nondecreasing sequence of nonnegative simple functions that con­
verges (pointwise) to g. 
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1	 BOREL-CANTELLI REVISITED 

Recall that one of the Borel-Cantelli lemmas states that if ∞ P(Ai) < ∞,i=1 
then P(Ai i.o.) = 0. In this section, we rederive this result using the new ma­
chinery that we have available. 

Let Xi be the indicator function of the event Ai, so that E[Xi] = P(Ai). 
Thus, by assumption ∞

i=1 E[Xi] < ∞. The random variables n
i=1 Xi are 

nonnegative and form an increasing sequence, as n increases. Furthermore, 
n �� ∞

lim Xi = Xi, 
n→∞ 

i=1 i=1 

pointwise; that is, for every ω, we have limn→∞ 
n Xi(ω) = ∞ Xi(ω).i=1 i=1 

We can now apply the MCT, and then the linearity property of expectations 
(for finite sums), to obtain � � � n �� ∞	 � 

E Xi = lim E Xi 

i=1 
n→∞ 

i=1 
n

=	 lim E[Xi] 
n→∞ 

i=1 
n

=	 lim P(Ai) 
n→∞ 

i=1 
∞

= P(Ai) 
i=1 

< ∞. 

This implies that ∞ Xi < ∞, a.s. (This is intuitively obvious, but a short i=1 
formal proof is actually needed.) It follows that, with probability 1, only finitely 
many of the events Ai can occur. Equivalently, the probability that infinitely 
many of the events Ai occur is zero, i.e., P(Ai i.o.) = 0. 

2	 CONNECTIONS BETWEEN ABSTRACT INTEGRATION AND EL­
EMENTARY DEFINITIONS OF INTEGRALS AND EXPECTATIONS 

Abstract integration would not be useful theory if it were inconsistent with the 
more elementary notions of integration. For discrete random variables taking 
values in a finite range, this consistency is automatic because of the definition of 
an integral of a simple function. We will now verify some additional aspects of 
this consistency. 
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2.1 Connection with Riemann integration. 

We state here, without proof, the following reassuring result. Let Ω = R, en­
dowed with the usual Borel σ-field. Let λ be the Lebesgue measure. Sup­
pose that g is a measurable function which is Riemann integrable on some in­� b	 � 
terval [a, b]. Then, the Riemann integral g(x) dx is equal to g dλ = �	 a [a,b] 

1[a,b]g dλ. 

2.2 Evaluating expectations by integrating on different spaces 

Consider a probability space (Ω, F , P). Let X : Ω R, be a random variable. →
We then obtain a second probability space (R, B, PX ), where B is the Borel 
σ-field, and PX is the probability law of X , defined by 

PX (A) = P({ω ∈ Ω | X(ω) ∈ A}), A ∈ B. 

Consider now a measurable function g : R R, and use it to define a new ran­→
dom variable Y = g(X), and a corresponding probability space (R, B, PY ). The 
expectation of Y can be evaluated in three different ways, that is, by integrating 
over either of the three spaces we have introduced. 

Theorem 1. We have 

Y dP = g dPX = y dPY , 

assuming that the integrals are well defined. 

Proof: We follow the “standard program”: first establish the result for simple 
functions, then take the limit to deal with nonnegative functions, and finally 
generalize. 

Let g be a simple function, which takes values in a finite set y1, . . . , yk. 
Using the definition of the integral of a simple function we have 

Y dP = yiP({ω | Y (ω) = yi}) = yiP({ω | g(X(ω)) = yi}). 
yi	 yi 

Similarly, � 
g dPX = yiPX ({x | g(x) = yi}). 

yi 
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However, from the definition of PX , we obtain 

PX ({x | g(x) = yi}) = PX (g−1(yi)) 
= P({ω | X(ω) ∈ g−1(yi)}) 
= P({ω | g(X(ω)) = yi}), 

and the first equality in the theorem follows, for simple functions. 
Let now g be nonnegative function, and let {gn} be an increasing sequence 

of nonnegative simple functions that converges to g. Note that gn(X) converges 
monotonically to g(X). We then have 

Y dP = g(X) dP = lim gn(X) dP = lim gn dPX = g dPX . 
n→∞ n→∞ 

(The second equality is the MCT; the third is the result that we already proved 
for simple functions; the last equality is once more the MCT.) 

The case of general (not just nonnegative) functions follows easily from the 
above – the details are omitted. This proves the first equality in the theorem. 

For the second equality, note that by considering the special case g(x) = x, 
we obtain Y = X and X dP = x dPX . By a change of notation, we have 
also established that Y dP = y dPY . 

2.3 The case of continuous random variables, described by PDFs 

We can now revisit the development of continuous random variables (Lecture 8), 
in a more rigorous manner. We say that a random variable X : Ω R is→
continuous if its CDF can be written in the form 

FX (x) = P(X ≤ x) = 1(−∞,x]f dλ, ∀x ∈ R, 

where λ is Lebesgue measure, and f is a nonnegative measurable function. It 
can then be shown that for any Borel subset A of the real line, we have 

PX (A) = f dλ. (1) 
A 

When f is Riemann integrable and the set A is an interval, we can also write 
PX (A) = A f(x) dx, where the latter integral is an ordinary Riemann integral. 
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Theorem 2. Let g be a measurable function which is either nonnegative, or 
satisfies |g| dPX < ∞. Then, 

E[g(X)] = g dPX = (gf) dλ. 

Proof: The first equality holds by definition. The second was shown in Theorem 
1. So, let us concentrate on the third. Following the usual program, let us first �kconsider the case where g is a simple function, of the form g = i=1 ai1Ai , for 
some measurable disjoint subsets Ai of the real line. We have � k

g dPX = aiPX (Ai) 
i=1 

k � 
= ai f dλ 

Aii=1 

k � 
= ai1Ai f dλ 

i=1 � k

= ai1Ai f dλ � i=1 

= (gf) dλ. 

The first equality is the definition of the integral for simple functions. The sec­
ond uses Eq. (1). The fourth uses linearity of integrals. The fifth uses the defini­
tion of g. 

Suppose now that g is a nonnegative function, and let {gn} be an increasing 
sequence of nonnegative functions that converges to g, pointwise. Since f is 
nonnegative, note that gnf also increases monotonically and converges to gf . 
Then, 

g dPX = lim gn dPX = lim (gnf) dλ = (gf) dλ. 
n→∞ n→∞ 

The first and the third equality above is the MCT. The middle equality is the 
result we already proved, for the case of a simple function gn. 

Finally, if g is not nonnegative, the result is proved by considering separately 
the positive and negative parts of g. 
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When g and f are “nice” functions, e.g., piecewise continuous, Theorem 2 
yields the familiar formula 

E[g(X)] = g(x)f(x) dx, 

where the integral is now an ordinary Riemann integral. 

FATOU’S LEMMA 

Note that for any two random variables, we have min{X, Y } ≤ X and min{X, Y } ≤ 
Y . Taking expectations, we obtain E[min{X, Y }] ≤ min{E[X], E[Y ]}. Fa­
tou’s lemma is in the same spirit, except that infinitely many random variables 
are involved, as well as a limiting operation, so some additional technical con­
ditions are needed. 

Theorem 3. Let Y be a random variable that satisfies E[|Y |] < ∞. 

(a) If Y ≤ Xn, for all n, then E[lim infn→∞ Xn] ≤ lim infn→∞ E[Xn]. 

(b) If Xn ≤ Y , for all n, then E[lim supn→∞ Xn] ≥ lim supn→∞ E[Xn]. 

By considering the case where Y = 0, we see that parts (a) and (b) ap­
ply in particular to the case of nonnegative (respectively, nonpositive) random 
variables. 
Proof: Let us only prove the first part; the second part frollows from a symmet­
rical argument, or by simply applying the first part to the random variables −Y 
and −Xn. 

Fix some n. We have 

inf Xk − Y ≤ Xm − Y, ∀ m ≥ n. 
k≥n 

Taking expectations, we obtain 

E[ inf Xk − Y ] ≤ E[Xm − Y ], ∀ m ≥ n. 
k≥n 

Taking the infimum of both sides with respect to m, we obtain 

E[ inf Xk − Y ] ≤ inf E[Xm − Y ]. 
k≥n m≥n 

Note that the sequence infk≥n Xk − Y is nonnegative and nondecreasing with 
n, and converges to lim infn→∞ Xn − Y . Taking the limit of both sides of the 
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preceding inequality, and using the MCT for the left-hand side term, we obtain


E[lim inf Xn − Y ] ≤ lim inf E[Xn − Y ]. 
n→∞ n→∞ 

Note that E[Xn − Y ] = E[Xn] − E[Y ]. (This step makes use of the as­
sumption that E[|Y |] < ∞.) For similar reasons, the term −E[Y ] can also be 
removed from the right-hand side. After canceling the terms E[Y ] from the two 
sides, we obtain the desired result. 

We note that Fatou’s lemma remains valid for the case of general measures 
and integrals. 

DOMINATED CONVERGENCE THEOREM 

The dominated convergence theorem complements the MCT by providing an 
alternative set of conditions under which a limit and an expectation can be inter­
changed. 

Theorem 4. (DCT) Consider a sequence of random variables {Xn} that 
converges to X (pointwise). Suppose that |Xn| ≤ Y , for all n, where Y is a 
random variable that satisfies E[|Y |] < ∞. Then, limn→∞ E[Xn] = E[X]. 

Proof: Since −Y ≤ Xn ≤ Y , we can apply both parts of Fatou’s lemma , to 
obtain 

E[X] = E[lim inf Xn] ≤ lim inf E[Xn] ≤ lim sup E[Xn] ≤ E[lim sup Xn] = E[X]. 
n→∞ n→∞ n→∞ n→∞ 

This proves that 

E[X] = lim inf E[Xn] = lim sup E[Xn]. 
n→∞ n→∞ 

In particular, the limit limn→∞ E[Xn] exists and equals E[X]. 

A special case of the DCT is the BCT (Bounded Convergence Theorem), 
which asserts that if there exists a constant c ∈ R such that |Xn| ≤ c, a.s., for 
all n, then E[Xn] X .→ 

Corollary 1. Suppose that ∞
n=1 E[|Zn|] < ∞. Then, 

� � ∞ �∞ � 
E[Zn] = E Zn . 

n=1 n=1 
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Proof: By the monotone convergence theorem, applied to Yn = k
n 
=1 |Zk|, we 

have � ∞ � �� ∞

E |Zn| = E[|Zn|] < ∞. 
n=1 n=1 

Let Xn = n Zi and note that limn→∞ Xn = ∞ Zn. We observe that � i=1 i=1 
|Xn| ≤ ∞ |Zi|, which has finite expectation, as shown earlier. The result i=1 
follows from the dominated convergence theorem. 

Exercise: Can you prove Corollary 1 directly from the monotonone convergence theo­
rem, without appealing to the DCT or Fatou’s lemma? 

Remark: We note that the MCT, DCT, and Fatou’s lemma are also valid for 
general measures, not just for probability measures (the proofs are the same); 
just replace expressions such as E[X] by integrals g dµ. 
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