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In elementary math and calculus, we often interchange the order of summa­
tion and integration. The discussion here is concerned with conditions under 
which this is legitimate. 

1 PRODUCT MEASURE 

Consider two probabilistic experiments described by probability spaces (�1, F1, P1) 
and (�2, F2, P2), respectively. We are interested in forming a probabilistic 
model of a “joint experiment” in which the original two experiments are car­
ried out independently. 

1.1 The sample space of the joint experiment 

If the first experiment has an outcome �1, and the second has an outcome �2, 
then the outcome of the joint experiment is the pair (�1, �2). This leads us to 
define a new sample space � = �1 × �2. 

1.2 The �-field of the joint experiment 

Next, we need a �-field on �. If A1 ≤ F1, we certainly want to be able to talk 
about the event {�1 ≤ A1} and its probability. In terms of the joint experiment, 
this would be the same as the event 

A1 × �1 = {(�1, �2) | �1 ≤ A1, �2 ≤ �2}. 
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Thus, we would like our �-field on � to include all sets of the form A1 × �2, 
(with A1 ≤ F1) and by symmetry, all sets of the form �1 ×A2 (with (A2 ≤ F2). 
This leads us to the following definition. 

Definition 1. We define F1 ×F2 as the smallest �-field of subsets of �1 ×�2 

that contains all sets of the form A1 × �2 and �1 × A2, where A1 ≤ F1 and 
A2 ≤ F2. 

Note that the notation F1×F2 is misleading: this is not the Cartesian product 
of F1 and F2! 

Since �-fields are closed under intersection, we observe that if Ai ≤ Fi, then 
A1 × A2 = (A1 × �2) � (�1 � A2) ≤ F1 × F2. It turns out (and is not hard 
to show) that F1 × F2 can also be defined as the smallest �-field containing all 
sets of the form A1 × A2, where Ai ≤ Fi. 

1.3 The product measure 

We now define a measure, to be denoted by P1 × P2 (or just P, for short) on the 
measurable space (�1 × �2, F1 ×F2). To capture the notion of independence, 
we require that 

P(A1 × A2) = P1(A1)P2(A2), � A1 ≤ F1, A2 ≤ F2. (1) 

Theorem 1. There exists a unique measure P on (�1 × �2, F1 × F2) that 
has property (1). 

Theorem 1 has the flavor of Carathéodory’s extension theorem: we define a 
measure on certain subsets that generate the �-field F1 × F2, and then extend 
it to the entire �-field. However, Caratheodory’s extension theorem involves 
certain conditions, and checking them does take some nontrivial work. Various 
proofs can be found in most measure-theoretic probability texts. 

1.4 Beyond probability measures 

Everything in these notes extends to the case where instead of probability mea­
sures Pi, we are dealing with general measures µi, under the assumptions that 
the measures µi are �-finite. (A measure µ is called �-finite if the set � can be 
partitioned into a countable union of sets, each of which has finite measure.) 
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The most relevant example of a �-finite measure is the Lebesgue measure 
on the real line. Indeed, the real line can be broken into a countable sequence of 
intervals (n, n + 1], each of which has finite Lebesgue measure. 

1.5 The product measure on R2 

The two-dimensional plane R2 is the Cartesian product of R with itself. We 
endow each copy of R with the Borel �-field B and one-dimensional Lebesgue 
measure. The resulting �-field B × B is called the Borel �-field on R2 . The 
resulting product measure on R2 is called two-dimensional Lebesgue measure, 
to be denoted here by �2. The measure �2 corresponds to the natural notion of 
area. For example, 

�2([a, b] × [c, d]) = �([a, b]) · �([c, d]) = (b − a) · (d − c). 

More generally, for any “nice” set of the form encountered in calculus, e.g., sets 
of the form A = {(x, y) | f(x, y) ∀ c}, where f is a continuous function, 
�2(A) coincides with the usual notion of the area of A. 

Remark for those of you who know a little bit of topology – otherwise ignore 
it. We could define the Borel �-field on R2 as the �-field generated by the 
collection of open subsets of R2 . (This is the standard way of defining Borel 
sets in topological spaces.) It turns out that this definition results in the same 
�-field as the method of Section 1.2. 

2 FUBINI’S THEOREM 

Fubini’s theorem is a powerful tool that provides conditions for interchanging 
the order of integration in a double integral. Given that sums are essentially 
special cases of integrals (with respect to discrete measures), it also gives con­
ditions for interchanging the order of summations, or the order of a summation 
and an integration. In this respect, it subsumes results such as Corollary 1 at the 
end of the notes for Lecture 12. 

In the sequel, we will assume that g : �1×�2 � R is a measurable function. 
This means that for any Borel set A ∩ R, the set {(�1, �2) | g(�1, �2) ≤ A} 
belongs to the �-field F1 ×F2. As a practical matter, it is enough to verify that 
for any scalar c, the set {(�1, �2) | g(�1, �2) ∀ c} is measurable. Other than 
using this definition directly, how else can we verify that such a function g is 
measurable? The basic tools at hand are the following: 

(a) continuous functions from R2 to R are measurable; 
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(b) indicator functions of measurable sets are measurable; 

(c) combining measurable functions in the usual ways (e.g., adding them, mul­
tiplying them, taking limits, etc.) results in measurable functions. 

Fubini’s theorem holds under two different sets of conditions: (a) nonnega­
tive functions g (compare with the MCT); (b) functions g whose absolute value 
has a finite integral (compare with the DCT). We state the two versions sepa­
rately, because of some subtle differences. 

The two statements below are taken verbatim from the text by Adams & 
Guillemin, with minor changes to conform to our notation. 

Theorem 2. Let g : �1 × �2 � R be a nonnegative measurable function. 
Let P = P1 × P2 be a product measure. Then, 

(a) For every �1 ≤ �1, g(�1, �2) is a measurable function of �2. 

(b) For every �2 ≤ �2, g(�1, �2) is a measurable function of �1. 

(c) 
�2 

g(�1, �2) dP2 is a measurable function of �1. 

(d) 
�1 

g(�1, �2) dP1 is a measurable function of �2. 

(e) We have 

g(�1, �2) dP2 dP1 = g(�1, �2) dP1 dP2 
�1 �2 �2 �1 

= g(�1, �2) dP. 
�1×�2 

Note that some of the integrals above may be infinite, but this is not a prob­
lem; since everything is nonnegative, expressions of the form ⊂ − ⊂ do not 
arise. 

Recall now that a function is said to be integrable if it is measurable and the 
integral of its absolute value is finite. 
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Theorem 3. Let g : �1 × �2 � R be a measurable function such that 

|g(�1, �2)| dP < ⊂, 
�1×�2 

where P = P1 × P2. 

(a) For almost all �1 ≤ �1, g(�1, �2) is an integrable function of �2. 

(b) For almost all �2 ≤ �2, g(�1, �2) is an integrable function of �1. 

(c) There exists an integrable function h : �1 � R such that 
�2 

g(�1, �2) dP2 = 
h(�1), a.s. (i.e., except for a set of �1 of zero P1-measure for which 

g(�1, �2) dP2 is undefined or infinite). 
�2 

(d) There exists an integrable function h : �2 � R such that 
�1 

g(�1, �2) dP1 = 
h(�2), a.s. (i.e., except for a set of �2 of zero P2-measure for which 

g(�1, �2) dP1 is undefined or infinite). 
�1 

(e) We have 

g(�1, �2) dP2 dP1 = g(�1, �2) dP1 dP2 
�1 �2 �2 �1 

= g(�1, �2) dP. 
�1×�2 

We repeat that all of these results remain valid when dealing with �-finite 
measures, such as the Lebesgue measure on R2 . This provides us with condi­
tions for the familiar calculus formula 

g(x, y) dx dy = g(x, y) dy dx. 

In order to apply Theorem 3, we need a practical method for checking the 
integrability condition 

|g(�1, �2)| dP < ⊂. 
�1×�2 

in Theorem 3. Here, Theorem 2 comes to the rescue. Indeed, by Theorem 2, we 
have 

� � � 
|g(�1, �2)| dP = |g(�1, �2)| dP2 dP1, 

�1×�2 �1 �2 
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so all we need is to work with the right hand side, and integrate one variable at 
a time, possibly also using some bounds on the way. 

Finally, let us note that all the hard work goes into proving Theorem 2. 
Theorem 3 is relatively easy to derive once Theorem 2 is available: Given a 
function g, decompose it into its positive and negative parts, apply Theorem 2 
to each part, and in the process make sure that you do not encounter expressions 
of the form ⊂−⊂. 

3 Some cautionary examples 

We give a few examples where Fubini’s theorem does not apply. 

3.1 Nonnegative and Integrability 

Suppose both of our sample spaces are the nonnegative integers: �1 = �2 = 
{1, 2, . . . , }. The �-fields F1 and F2 will be all subsets of �1 and �2, respec­
tively. Then, �(F1 × F2) will be composed of all subsets of {1, 2, . . . , }2. Both 
P1 and P2 will be the counting measure, i.e. P (A) = |A|. This means that 

gdP1 = f(a), hdP2 = h(b), fdP1 × P2 = f(c). 
A B C 

a�A b�B c�C 

Consider the function f defined by f(m,m) = 1, f(m,m + 1) = −1, and 
f = 0 elsewhere. It is easier to visualize f with a picture: 

1 −1 0 0 · · · 
0 1 −1 0 · · · 
0 0 1 −1 · · · 
0 0 0 1 · · · 
. . . . . . . . . . . . . . . 

So 

fdP1dP2 = ≥ f(n,m) = fdP2dP1f(n,m) = 0 = 1 = 
�1 �2 n m m n �2 �1 

The problem is that the function we are integrating is neither nonnegative nor 
integrable. 
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3.2 �-finiteness 

Let �1 = (0, 1), and let F1 be the Borel sets, and P1 be the Lebesgue measure. 
Let �2 = (0, 1) and F2 be the set of all subsets of (0, 1), and let P2 be the 
counting measure. 

Define f(x, y) = 1 if x = y and 0 otherwise. Then, 

f(x, y)dP2(y)dP1(x) = 1dP1(y) = 1, 
�1 �2 �1 

but 
� � � 

f(x, y)dP1(x)dP2(y) = 0dP2(y) = 0. 
�2 �1 �2 

The problem is that the counting measure on (0, 1) is not �-finite. 

4 An application 

Let’s apply Fubini’s theorem to prove a generalization of a familiar relation from 
a beginning probability course. 

Let X be a nonnegative integer-valued random variable. Then, 

E[X] = P (X → i). 
i=1 

This is usually proved as follows: 

E[X] = ip(i) 
i=1 

� i 

= p(i) 
i=1 k=1 

= p(i) 
k=1 i=k 

= P (X → k) 
k=1 

where the sum exchange is typically justified by an appeal to nonnegativity. 
Let’s rigourously prove a justification of this relation in the most general 

case. We will show that if X is a nonnegative random variable, then 

E[X] = P (X → x)dx. 
0 
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Proof: Define A = {(w, x) | 0 ∀ x ∀ X(w)}. Intuitively, if � = R, then A 
would be the region under the curve X(w). We argue that 

E[X] = X(w)dP = 1A(w, x)dxdP, 
� � 0 

and now let’s postpone the technical issues for a moment and interchange the 
integrals to get 

E[X] = 1A(w, x)dPdx 
0 � 

= P (X → x)dx. 
0 

Now let’s consider the technical details necessary to make the above argument 
work. The integral interchange can be justified on account of the funciton 1A 

being nonnegative, so we just need to show that all the functions we deal with 
are measurable. In particular we need to show that: 

1. For fixed x, 1A(w, x) is a measurable functions of w. 

2. For fixed w, 1A(w, x) is a measurable function of x. 

3. X(�) is a measurable function of �. 

4. P (X → x) is a measurable function of x. 

5. 1A(w, x) is a measurable function of w and x. 

and we do this as follows: 

1. For fixed x, 1A(w, x) is the indicator function of the set X → x, so it must 
be measurable. 

2. For fixed w, 1A(w, x) is the indicator function of the interval [0, X(w)], 
so it is lebesgue measurable. 

3. X is measurable since its a random variable. 

4. Using the notation Z(x) = P (X → x), observe that if a ≤ {Z → z}, then 
so is every number below a. It follows that the set {Z → z} is always an 
interval, so it is Lebesgue measurable. 
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5. To show that 1A is measurable, we argue that A is measurable.Indeed, the 
function g : � × R � R defined by g(w, x) = X(w) is measurable, 
since for any Borel set B, g−1(B) = X−1(B) × (−⊂, +⊂). Similarly, 
h : �×R � R defined as h(w, x) = x is measurable for the same reason. 
Since 

A = {g → h} {h → 0}, 

it follows that A is measurable. 
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