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MULTIVARIATE NORMAL DISTRIBUTIONS
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In an earlier lecture, we worked through the bivariate normal distribution 
and its properties, relying mostly on algebraic manipulation and integration of 
normal PDFs. Here, we revisit the subject in more generality (n dimensions), 
while using more elegant tools. First, some background. 

1 BACKGROUND ON POSITIVE DEFINITE MATRICES. 

Definition 1. Let A be a square (n × n) symmetric matrix. 

(a) We say that A is positive definite, and write A > 0, if xT Ax > 0, for every 
nonzero x ∈ Rn . 

(b) We say that A is nonnegative definite, and write A ≥ 0, if xT Ax ≥ 0, for 
every x ∈ Rn . 

It is known (e.g., see any basic linear algebra text) that: 

(a) A symmetric matrix has n real eigenvalues. 

(b) A positive definite matrix has n real and positive eigenvalues. 

(c) A nonnegative definite matrix has n real and nonnegative eigenvalues. 
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(d) To each eigenvalue of a symmetric matrix, we can associate a real eigen­
vector. Eigenvectors associated with distinct eigenvalues are orthogonal; 
eigenvectors associated with repeated eigenvalues can always be taken to be 
orthogonal. Without loss of generality, all these eigenvectors can be nor­
malized so that they have unit length, resulting in an orthonormal basis. 

(e) The above essentially states that a symmetric definite matrix becomes diag­
onal after a suitable orthogonal change of basis. 

A concise summary of the above discussion is the following spectral decompo­
sition formula: Every symmetric matrix A can be expressed in the form 

n

A = λizizi
T , 

i=1 

where λ1, . . . , λn are the eigenvalues of A, and z1, . . . , zn is an associated col­
lection of orthonormal eigenvectors. (Note here that zizT is a n × n matrix, of i 
rank 1.) 

For nonnegative definite matrices, we have λi ≥ 0, which allows us to take 
square roots and define 

n

B = λizizT
i . 

i=1 

We then observe that: 

(a) The matrix B is symmetric. 

(b) We have B2 = A (this is an easy calculation). Thus B is a symmetric 
square root of A. 

(c) The matrix B has eigenvalues 
√

λi. Therefore, it is positive (respectively, 
nonnegative) definite if and only if A is positive (respectively, nonnegative) 
definite. 

Finally, if A is positive definite, then each λi is positive, and we can define 
the matrix 

n� 1 TC = zizi . λii=1 

An easy calculation shows that CA = AC = I , so that C = A−1 . 
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2 DEFINITION OF THE MULTIVARIATE NORMAL DISTRIBUTION 

Our interest in positive definite matrices stems for the following. When A is 
positive definite, the quadratic form q(x) = xT Ax goes to infinity as �x� → ∞, 
so that e−q(x) decays to zero, as �x� → ∞, and therefore can be used to define 
a multivariate PDF. 

There are multiple ways of defining multivariate normal distributions. We 
will present three, and will eventually show that they are consistent with each 
other. 

The first generalizes our definition of the bivariate normal. It is the most 
explicit and transparent; on the downside it can lead to unpleasant algebraic 
manipulations. Recall that |V | stands for the absolute value of the determinant 
of a square matrix V . 

Definition 2. A random vector X has a nondegenerate (multivariate) nor­
mal distribution if it has a joint PDF of the form 

fX (x) = � 
1 

exp 
� (x − µ)V −1(x − µ)T � 

,
(2π)n|V |

− 
2 

for some real vector µ and some positive definite matrix V . 

The second definition is constructive, which makes it operationally useful.


Definition 3. A random vector X has a (multivariate) normal distribution 
if it can be expressed in the form 

X = DW + µ, 

for some matrix D and some real vector µ, where W is a random vector 
whose components are independent N(0, 1) random variables. 

The last definition is possibly the hardest to penetrate, but in the eyes of 
some, it is the most elegant. 

Definition 4. A random vector X has a (multivariate) normal distribution 
if for every real vector a, the random variable aT X is normal. 
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A brief remark on the use of the word “nondegenerate” in Definition 2. Un­
der Definition 2, fX (x) > 0 for all x. On the other hand, consider the following 
example. Let X1 ∼ N(0, 1) and let X2 = 0. The random vector X = (X1, X2) 
is normal according to Definitions 3 or 4, but cannot be described by a joint 
PDF (all of the probability is concentrated on the horizontal axis, a set of zero 
area). This is an example of a degenerate normal distribution: the distribution 
is concentrated on a proper subspace of Rn . The most extreme example is a 
one-dimensional random variable, which is identically equal to zero. This qual­
ifies as normal under Definitions 3 and 4. One may question the wisdom of 
calling the number “zero” a “normal random variable;” the reason for doing so 
is that it allows us to state results such as “a linear function of a normal random 
variable is normal”, etc., without having to worry about exceptions and special 
conditions that will prevent degeneracy. 

3 MEANS AND COVARIANCES OF VECTOR RANDOM VARIABLES 

Let us first introduce a bit more notation. If X = (X1, . . . , Xn) is a random 
vector, we define 

E[X] = (E[X1], . . . , E[Xn]), 

which we treat as a column vector. Similarly, If A is a random matrix (a matrix 
with each entry being a random variable Aij ), we use the notation E[A], to 
denote the matrix whose entries are E[Aij ]. 

Given two random vectors X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym), we 
can consider all the possible covariances 

Cov(Xi, Yj ) = E[(Xi − E[Xi])(Yi − E[Yj ])], 

and we can arrange them in a n × m covariance matrix 

Cov(X, Y) 

whose (i, j)th entry is Cov(Xi, Yj ). It is easily checked that 

Cov(X, Y) = E (X − E[X])(Y − E[Y])T . 

Notice also that Cov(X, X) is a n × n symmetric matrix. 

Exercise 1. Prove that Cov(X, X) is nonnegative definite. 
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4 KEY PROPERTIES OF THE MULTIVARIATE NORMAL 

The theorem below includes almost everything useful there is to know about 
multivariate normals. We will prove and state the theorem, while working 
mostly with Definition 3. The proof of equivalence of the three definitions will 
be completed in the next lecture, together with some additional observations. 

Theorem 1. Suppose that X = (X1, . . . , Xn) is multivariate normal, in the 
sense of Definition 3, and let µi be the ith component of µ. 

(a) For every i, Xi is normal, with mean µi. 

(b) We have Cov(X, X) = DDT . 

(c) If C is a m × n matrix and d is a vector in Rm, then Y = CX + d is 
multivariate normal in the sense of Definition 3, with mean Cµ + d and 
covariance matrix CDDT CT . 

(d) If |D| = 0� , then X is a nondegenerate multivariate normal in the sense of 
Definition 2, with V = DDT = Cov(X, X). 

(e) The joint CDF FX of X is completely determined by the mean and co­
variance of X. 

(f) The components of X are uncorrelated (i.e., the covariance matrix is di­
agonal) if and only if they are independent. 

(g) If � � �� � � �� 
X 
Y 

∼ N 
µX 

µY 
, 

VXX 

VY X 

VXY 

VY Y 
, 

and VY Y > 0, then: 

(i) E[X | Y] = µX + VXY V −1(Y − µY ).Y Y 

(ii) Let X̃ = X − E[X | Y]. Then, X̃ is independent of Y, and inde­
pendent of E[X | Y]. 

(iii) Cov( X̃, X̃ | Y) = Cov( X̃, X̃) = VXX − VXY V −1VY X .Y Y 

Proof: 

(a) Under definition 3, Xi is a linear function of independent normal random 
variables, hence normal. Since E[W] = 0, we have E[Xi] = µi. 

(b) For simplicity, let us just consider the zero mean case. We have 

Cov(X, X) = E[XXT ] = E[DWWT DT ] = DE[WWT ]DT = DDT , 

5 



where the last equality follows because the components of W are in­
dependent (hence the covariance matrix is diagonal), with unit variance 
(hence the diagonal entries are all equal to 1). 

(c) We have Y = CX + d = C(DW + µ) + d, which is itself a linear 
function of independent standard normal random variables. Thus, Y is 
multivariate normal. The formula for E[Y] is immediate. The formula 
for the covariance matrix follows from part (b), with D being replaced by 
(CD). 

(d) This is an exercise in derived distributions. Let us again just consider the 
case of µ = 0. We already know (Lecture 10) that when X = DW , with 
D invertible, then 

fW (D−1w)
fX (x) = . 

| det D|
In our case, since the Wi are i.i.d. N(0,1), we have 

fW (w) = � 
(2
1 

π)n 
exp 

� 
− 

2
1 
wT w 

� 
, 

leading to 

1 � 1 � 
fX (x) = � exp xT (D−1)T D−1x . 

(2π)n|DDT |
− 

2

This is of the form given in Definition 2, with V = DDT . In conjunction 
with part (b), we also have Cov(X, X) = V . The argument for the non­
zero mean case is essentially the same. 

(e) Using part (d), the joint PDF of X is completely determined by the matrix 
V , which happens to be equal to Cov(X, X), together with the vector µ. 

The degenerate case is a little harder, because of the absence of a conve­
nient closed form formula. One could think of a limiting argument that 
involves injecting a tiny bit of noise in all directions, to make the distri­
bution nondegenerate, and then taking the limit. This type of argument 
can be made to work, but will involve tedious technicalities. Instead, we 
will take a shortcut, based on the inversion property of transforms. This 
argument is simpler, but relies on the heavy machinery behind the proof 
of the inversion property. 

Let us find the multivariate transform MX(s) = E[esT x]. We note that 
sT X is normal with mean sT µ. Letting X̃ = X − µ, the variance of sT X 
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is 

var(sT X) = E[sT X̃X̃T s] = sT E[X̃X̃T ]s = sT Cov(X, X)s = sT V s. 

Using the formula for the transform of a single normal random variable 
(sT X in this case), we have 

MX(s) = E[e s
T x] = MsT X(1) = e s

T µe s
T V s/2 . 

Thus, µ and V completely determine the transform of X. By the inversion 
property of transforms, µ and V completely determine the distribution 
(e.g., the CDF) of X. 

(f) If the components of X are independent they are of course uncorrelated. 
For the converse, suppose that the components of X are uncorrelated, i.e., 
the matrix V is a diagonal. Consider another random vector Y that has 
the same mean and as X, whose components are independent normal, and 
such that the variance of Yi is the same as the variance of Xi. Then, X 
and Y have the same mean and covariance. By part (e), X and Y have the 
same distribution. Since the components of Y are independent, it follows 
that the components of X are also independent. 

(g) Once more, to simplify notation, let us just deal with the zero-mean case. 
Let us define 

X̂ = VXY V −1Y.Y Y 

We then have 

XYT ] = VXY V −1E[YYT ] = VXY = E[XYT ].E[ ̂ Y Y 

This proves that X − X̂ is uncorrelated with Y. Note that (X − X̂, Y) is 
a linear function of (X, Y), so, by part (c), it is also multivariate normal. 
Using an argument similar to the one in the proof of part (f), we conclude 
that X − X̂ is independent of Y, and therefore independent from any 
function of Y. Recall now the abstract definition of conditional expecta­
tions. The relation E[(X − X̂)g(Y)] = 0, for every function g, implies 
that X̂ = E[X | Y], which proves part (i). 

For part (ii), note that we already proved that ˜ X = X − E[X |X = X − ˆ
Y] is independent of Y. Since E[X Y] is a function of Y, it follows 
that X̃ is independent of E[X | Y]. 

| 
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For part (iii), note that ˜ X, ˜X is independent of Y, which implies that Cov( ̃ X 
Y) = Cov( ̃ X). Finally, 

|
X, ˜

X˜ X)XT ]Cov( X̃, X̃) = E[ ̃ X)(X − ˆXT ] = E[(X − ˆ X)T ] = E[(X − ˆ

= VXX − E[VXY V −1YXT ] = VXX − VXY V −1E[YXT ]Y Y Y Y 

= VXX − VXY V −1VY X .Y Y 

Note that in the case of the bivariate normal, we have Cov(X, Y ) = ρσX σY , 
VXX X , VY Y Y = σ2 = σ2 . Then, part (g) of the preceding theorem, for the zero-
mean case, reduces to 

E[X | Y ] = ρ
σX 

Y, var( X̃) = σ2 (1 − ρ2),
σY

X 

which agrees with the formula we derived through elementary means in Lec­
ture 9, for the special case of unit variances. 
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