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1	 EQUIVALENCE OF THE THREE DEFINITIONS OF THE MULTI­
VARIATE NORMAL DISTRIBUTION 

1.1 The definitions 

Recall the following three definitions from the previous lecture. 

Definition 1. A random vector X has a nondegenerate (multivariate) nor­
mal distribution if it has a joint PDF of the form 

fX (x) = � 
1 

exp 
� (x − µ)V −1(x − µ)T � 

,
(2π)n|V |

− 
2 

for some real vector µ and some positive definite matrix V . 
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Definition 2. A random vector X has a (multivariate) normal distribution 
if it can be expressed in the form 

X = DW + µ, 

for some matrix D and some real vector µ, where W is a random vector 
whose components are independent N(0, 1) random variables. 

Definition 3. A random vector X has a (multivariate) normal distribution 
if for every real vector a, the random variable aT X is normal. 

PROOF OF EQUIVALENCE 

In the course of the proof of Theorem 1 in the previous lecture, we argued that 
if X is multivariate normal, in the sense of Definition 2, then: 

(a) It also satisfies Definition 3: if X = DW + µ, where the Wi are indepen­
dent, then aT X is a linear function of independent normals, hence normal. 

(b) As long as the matrix D is nonsingular (equivalently, if Cov(X, X) = DDT 

is nonsingular), X also satisfies Definition 1. (We used the derived distribu­
tions formula.) 

We complete the proof of equivalence by establishing converses of the above 
two statements. 

Theorem 1. 

(a) If X satisfies Definition 1, then it also satisfies Definition 2. 

(b) If X satisfies Definition 3, then it also satisfies Definition 2. 

Proof: 

(a) Suppose that X satisfies Definition 1, so in particular, the matrix V is posi­
tive definite. Let D be a symmetric matrix such that D2 = V . Since 

(det(D))2 = det(D2) = det(V ) > 0, 
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we see that D is nonsingular, and therefore invertible. Let 

W = D−1(X − µ). 

Note that E[W] = 0. Furthermore, 

Cov(W, W) = E[D−1(X − µ)(X − µ)T D−1] 

= D−1E[(X − µ)(X − µ)T ]D−1 

= D−1V D−1 = I. 

We have shown thus far that the Wi are normal and uncorrelated. We now 
proceed to show that they are independent. Using the formula for the PDF 
of X and the change of variables formula, we find that the PDF of W is of 
the form 

c exp{−wT w/2} = c exp{(w1
2 + + wn)2/2},· · · · · 

for some normalizing constant c, which is the joint PDF of a vector of in­
dependent normal random variables. It follows that X = DW + µ is a 
multivariate normal in the sense of Definition 2. 

(b) Suppose that X satisfies Definition 3, i.e., any linear function aT X is nor­
mal. Let V = Cov(X, X), and let D be a symmetric matrix such that 
D2 = V . We first give the proof for the easier case where V (and therefore 
D) is invertible. 

Let W = D−1(X − µ). As before, E[W] = 0, and Cov(W, W) = I . Fix 
a vector s, Then, sT W is a linear function of W, and is therefore normal. 
Note that 

var(sT W) = E[sT WWT s] = sT Cov(W, W)s = sT s. 

Since sT W is a scalar, zero mean, normal random variable, we know that 

MW(s) = E[exp{sT W}] = MsT W(1) = exp{var(sT W)/2} = exp{sT s/2}. 

We recognize that this is the transform associated with a vector of inde­
pendent standard normal random variables. By the inversion property of 
transforms, it follows that W is a vector of independent standard normal 
random variables. Therefore, X = DW + µ is multivariate normal in the 
sense of Definition 2. 
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(b)�	 Suppose now that V is singular (as opposed to positive definite). For sim­
plicity, we will assume that the mean of X is zero. Then, there exists some 
a = 0� , such that V a = 0, and aT V a = 0. Note that 

aT V a = E (aT X)2 . 

This implies that aT X = 0, with probability 1. Consequently, some com­
ponent of X is a deterministic linear function of the remaining components. 

By possibly rearranging the components of X, let us assume that Xn is a lin­
ear function of (X1, . . . , Xn−1). If the covariance matrix of (X1, . . . , Xn−1) 
is also singular, we repeat the same argument, until eventually a nonsingu­
lar covariance matrix is obtained. At that point we have reach the situation 
where X is partitioned as X = (Y, Z), with Cov(Y, Y) > 0, and with Z a 
linear function of Y (i.e., Z = AY, for some matrix A, with probability 1). 

The vector Y also satisfies Definition 3. Since its covariance matrix is non-
singular, the previous part of the proof shows that it also satisfies Defini­
tion 2. Let k be the dimension of Y. Then, Y = DW, where W consists 
of k independent standard normals, and D is a k × k matrix. Let W be a 
vector of n − k independent standard normals. Then, we can write � � � � � � 

X = 
Y 
Z 

= 
D 

AD 
0 
0 

W 
W 

, 

which shows that X satisfies Definition 2. 

We should also consider the extreme possibility that in the process of elimi­
nating components of X, a nonsingular covariance matrix is never obtained. 
But in that case, we have X = 0, which also satisfies Definition 2, with 
D = 0. (This is the most degenerate case of a multivariate normal.) 

WHITENING OF A SEQUENCE OF NORMAL RANDOM VARIABLES 

The last part of the proof in the previous section provides some interesting intu­
ition. Given a multivariate normal vector X, we can always perform a change of 
coordinates, and obtain a representation of that vector in terms of independent 
normal random variables. Our process of going from X to W involved factoring 
the covariance matrix V of X in the form V = D2, where D was a symmetric 
square root of V . However, other factorizations are also possible. The most 
useful one is described below. 
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Let 

W1 = X1,


W2 = X2 − E[X2 | X1],

W3 = X3 − E[X3 | X1, X2],


. . . . . . 

Wn = Xn − E[Xn | X1, . . . , Xn−1]. 

(a) Each Wi can be interpreted as the new information provided by Xi, given 
the past, (X1, . . . , Xi−1). The Wi are sometimes called the innovations. 

(b) When we deal with multivariate normals, conditional expectations are linear 
functions of the conditioning variables. Thus, the Wi are linear functions of 
the Xi. Furthermore, we have W = LX, where L is a lower triangular ma­
trix (all entries above the diagonal are zero). The diagonal entries of L are 
all equal to 1, so L is invertible. The inverse of L is also lower triangular. 
This means that the transformation from X to W is causal (Wi can be de­
termined from X1, . . . , Xi) and causally invertible (Xi can be determined 
from W1, . . . ,Wi). Engineers sometimes call this a “causal and causally 
invertible whitening filter.” 

(c) The Wi are independent of each other. This is a consequence of the general 
fact E[(X − E[X | Y ])Y ] = 0, which shows that the Wi is uncorrelated 
with X1, . . . , Xi−1, hence uncorrelated with W1, . . . ,Wi−1. For multivari­
ate normals, we know that zero correlation implies independence. As long 
as the Wi have nonzero variance, we can also normalize them so that their 
variance is equal to 1. 

(d) The covariance matrix of W, call it B, is diagonal. An easy calculation 
shows that Cov(X, X) = L−1B(L−1)T . This kind of factorization into a 
product of a lower triangular (L−1B1/2) and upper triangular (B1/2(L−1)T ) 
matrix is called a Cholesky factorization. 

INTRODUCTION TO CHARACTERISTIC FUNCTIONS 

We have defined the moment generating function MX (s), for real values of 
s, and noted that it may be infinite for some values of s. In particular, if 
MX (s) = ∞ for every s �= 0, then the moment generating function does not 
provide enough information to determine the distribution of X . (As an example, 
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consider a PDF of the form fX (x) = c/(1 + x2), where c is a suitable nor­
malizing constant.) A way out of this difficulty is to consider complex values 
of s, and in particular, the case where s is a purely imaginary number: s = it, 
where i = 

√
−1, and t ∈ R. The resulting function is called the characteristic 

function, formally defined by 

φX (t) = E[e itX ]. 

For example, when X is a continuous random variable with PDF f , we have 

φX (t) = e ixtf(x) dx, 

which very similar to the Fourier transform of f (except for the absence of a 
minus sign in the exponent). Thus, the relation between moment generating 
functions and characteristic functions is of the same kind as the relation between 
Laplace and Fourier trasnforms. 

Note that eitX is a complex-valued random variable, a new concept for us. 
However, using the relation eitX = cos(tX)+i sin(tX), defining its expectation 
is straightforward: 

φX (t) = E[cos(tX)] + iE[sin(tX)]. 

We make a few key observations: 

(a) Because |eitX | ≤ 1 for every t, its expectation, φX (t) is well-defined and 
finite for every t ∈ R. In fact, |φX (t)| ≤ 1, for every t. 

(b) The key properties of moment generating functions (cf. Lecture 14) are also 
valid for characteristic functions (same proof). 

Theorem 2. 

(a) If Y = aX + b, then φY (t) = eitbφX (at). 

(b) If X and Y are independent, then φX+Y (t) = φX (t)φY (t). 

(c) Let X and Y be independent random variables. Let Z be equal to X , 
with probability p, and equal to Y , with probability 1 − p. Then, 

φZ (t) = pφX (t) + (1 − p)φY (t). 

(c)	 Inversion theorem: If two random variables have the same characteristic 
function, then their distributions are the same. (The proof of this is nontriv­
ial.) 
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(d) The above inversion theorem remains valid for multivariate characteristic 
functions, defined by φX(t) = E[eitT X]. 

(e) For the univariate case, if X is a continuous random variable with PDF fX , 
there is an explicit inversion formula, namely � T1 

fX (x) = lim e−itxφX (t) dt,
2π T →∞ −T 

for every x at which fX is differentiable. (Note the similarity with inversion 
formulas for Fourier transforms.) 

(f) The dominated convergence theorem can be applied to complex random 
variables (simply apply the DCT separately to the complex and imaginary 
parts). Thus, if limn→∞ Xn = X , a.s., then, for every t ∈ R, 

lim φXn (t) = lim E[e itXn ] = E 
� 

lim
 e
itXn = E[e
itX ] = lim φX (t). 
n→∞ n→∞ n→∞ n→∞ 

The DCT applies here, because the random variables |eitXn | are bounded 
by 1. 

(g) If E[|X|k] < ∞, then 

dk 

dtk φX (t) = ikE[Xk]. 
t=0 

(This is plausible, by moving the differentiation inside the expectation, but 
a formal justification is needed.) 

Two useful characteristic functions: 

(a) Exponential: If fX (x) = λe−λx , x ≥ 0, then 

λ 
φX (y) = . 

λ − it 

Note that this is the same as starting with MX (s) = λ(λ − s) and replacing 
s by it; however, this is not a valid proof. One must either use tools from 
complex analysis (contour integration), or evaluate separately E[cos(tX)], 
E[sin(tX)], which can be done using integration by parts. 

(b) Normal: In X = 
d 

N(µ, σ2), then 

φX (t) = eitµe−t2σ2/2 . 
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