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THE STRONG LAW OF LARGE NUMBERS 

While the weak law of large numbers establishes convergence of the sample 
mean, in probability, the strong law establishes almost sure convergence. 

Before we proceed, we point out two common methods for proving almost 
sure convergence. 

Proposition 1: Let {Xn} be a sequence of random variables, not necessarily 
independent. 
(i) If ∞ E[ s] < ∞, and s > 0, then Xn 

a.s. 0. n=1� |Xn| →
(ii) If P( > �) < ∞, for every � > 0, then Xn 

a.s. 0. n=1
∞ |Xn| → 

Proof. (i) By the monotone convergence theorem, we obtain E[ ∞
n=1 Xn

s] < 
∞, which implies that the random variable ∞

n=1 |Xn|s is finite, with probabil­
ity 1. Therefore, Xn|s a.s. 0, which also implies that Xn 

a.s. 0.| → →
(ii) Setting � = 1/k, for any positive integer k, the Borel-Cantelli Lemma shows 
that the event {|Xn| > 1/k} occurs only a finite number of times, with prob­
ability 1. Thus, P(lim sup Xn > 1/k) = 0, for every positive integer k.n→∞
Note that the sequence of events {lim supn→∞ |Xn| > 1/k} is monotone and 
converges to the event {lim supn→∞ |Xn| > 0}. The continuity of probabil­
ity measures implies that P(lim sup > 0) = 0. This establishes that 

a.s.
n→∞ |Xn|

Xn 0.→ 
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Theorem 1: Let X, X1, X2, . . . be i.i.d. random variables, and assume that 
E[|X|] < ∞. Let Sn = X1 + · · · + Xn. Then, Sn/n converges almost surely 
to E[X]. 

Proof, assuming finite fourth moments. Let us make the additional assump­
tion that E[X4] < ∞. Note that this implies E[|X|] < ∞. Indeed, using the 
inequality |x| ≤ 1 + x4, we have 

E |X| ≤ 1 + E[X4] < ∞. 

Let us assume first that E[X] = 0. We will show that 

E 
�∞ (X1 + · · · 

4 

+ Xn)4 

< ∞. 
n

n=1 

We have � � n n n n

E 
(X1 + · · · 

4 

+ Xn)4 

=
1 
4 

� � � � 
E[Xi1 Xi2 Xi3 Xi4 ]. n n

i1=1 i2=1 i3=1 i4=1 

Let us consider the various terms in this sum. If one of the indices is differ­
ent from all of the other indices, the corresponding term is equal to zero. For 
example, if i1 is different from i2, i3, or i4, the assumption E[Xi] = 0 yields 

E[Xi1 Xi2 Xi3 Xi4 ] = E[Xi1 ] E[Xi2 Xi3 Xi4 ] = 0. 

Therefore, the nonzero terms in the above sum are either of the form E[Xi 
4] 

(there are n such terms), or of the form E[Xi 
2Xj 

2], with i =� j. Let us count the 
number of terms of the second type. Such terms are obtained in three different 
ways: by setting i1 = i2 �= i3 = i4, or by setting i1 = i3 �= i2 = i4, or by 
setting i1 = i4 =� i2 = i3. For each one of these three ways, we have n choices 
for the first pair of indices, and n − 1 choices for the second pair. We conclude 
that there are 3n(n − 1) terms of this type. Thus, 

E 
(X1 + · · · + Xn)4 

= 
nE[X1

4] + 3n(n − 1)E[X1
2X2

2] 
.

4 4n n

Using the inequality xy ≤ (x2 + y2)/2, we obtain E[X1
2X2] ≤ E[X4], and 2 1 

(X1 + + Xn)4 n + 3n(n − 1) E[X1
4] 3n2E[X1

4] 3E[X1
4]

E 
· · · 

= . 
n4 ≤ 

n4 ≤ 
n4 n2 
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It follows that 

E 
∞ (X1 + · · · + Xn)4 

= 
∞ 1 

E 
� 
(X1+ +Xn)4

� ∞ 3 
E[X1

4] < ∞,
4 2n4 n

· · · ≤ 
n

n=1 n=1 n=1 

where the last step uses the well known property ∞
n=1 n

−2 < ∞. This implies 
that (X1 + + Xn)4/n4 converges to zero with probability 1, and therefore, · · · 
(X1 + +Xn)/n also converges to zero with probability 1, which is the strong · · ·
law of large numbers. 

For the more general case where the mean of the random variables Xi is 
nonzero, the preceding argument establishes that X1 + + Xn − nE[X1] /n· · · 
converges to zero, which is the same as (X1 + +Xn)/n converging to E[X1],· · ·
with probability 1. 

Proof, assuming finite second moments. We now consider the case where we 
only assume that E[X2] < ∞. We have ��Sn 

�2 
� 

var(X)
E − µ = . 

n n 

If we only consider values of n that are perfect squares, we obtain � �2 �∞ ��Si2 
� ∞ var(X)

E 
i2 − µ = 

i2 < ∞, 
i=1 i=1 

which implies that 
� 
(Si2 /i2) − E[X] 

�2 converges to zero, with probability 1. 
Therefore, Si2 /i2 converges to E[X], with probability 1. 

Suppose that the random variables Xi are nonnegative. Consider some n 
such that i2 ≤ n < (i + 1)2. We then have Si2 ≤ Sn ≤ S(i+1)2 . It follows that 

Si2 Sn S(i+1)2 

,
(i + 1)2 ≤ 

n 
≤ 

i2 

or 
i2 Si2 Sn (i + 1)2 S(i+1)2 

.
(i + 1)2 · i2 ≤ 

n 
≤ 

i2 · 
(i + 1)2 

As n → ∞, we also have i → ∞. Since i/(i + 1) → 1, and since Si2 · i2 

converges to E[X], with probability 1, we see that for almost all sample points, 
Sn/n is sandwiched between two sequences that converge to E[X]. This proves 
that Sn/n E[X], with probability 1. →

For a general random variable X , we write it in the form X = X+ − X−, 
where X+ and X− are nonnegative. The strong law applied to X− and X− 

separately, implies the strong law for X as well. 
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The proof for the most general case (finite mean, but possibly infinite vari­
ance) is omitted. It involves truncating the distribution of X , so that its moments 
are all finite, and then verifying that the “errors” due to such truncation are not 
significant in the limit. 

2 The Chernoff bound 

Let again X, X1, . . . be i.i.d., and Sn = X1 + + Xn. Let us assume, for sim­· · · 
plicity, that E[X] = 0. According to the weak law of large numbers, we know 
that P(Sn ≥ na) → 0, for every a > 0. We are interested in a more detailed 
estimate of P(Sn ≥ na), involving the rate at which this probability converges 
to zero. It turns out that if the moment generating function of X is finite on 
some interval [0, c] (where c > 0), then P(Sn ≥ na) decays exponentially with 
n, and much is known about the precise rate of exponential decay. 

2.1 Upper bound 

Let M(s) = E[esX ], and assume that M(s) < ∞, for s ∈ [0, c], where c > 0. 
Recall that MSn (s) = E[es(X1+···+Xn)] = (M(s))n. For any s > 0, the Markov 
inequality yields 

P(Sn ≥ na) = P(e sSn ≥ e nsa) ≤ e−nsaE[e sSn ] = e−nsa(M(s))n . 

Every nonnegative value of s, gives us a particular bound on P(Sn ≥ a). To 
obtain the tightest possible bound, we minimize over s, and obtain the following 
result. 

Theorem 2. (Chernoff upper bound) Suppose that E[esX ] < ∞ for some 
s > 0, and that a > 0. Then, 

P(Sn ≥ na) ≤ e−nφ(a), 

where 
φ(a) = sup sa − log M(s) . 

s≥0 

For s = 0, we have 

sa − log M(s) = 0 − log 1 = 0, 

where we have used the generic property M(0) = 1. Furthermore, 

M(s)

s=0 

= a − 1 E[X] > 0.· 1
d
 d

sa − log M(s)
 = a − 

M(s) 
·


ds
 ds
s=0 
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Since the function sa − log M(s) is zero and has a positive derivative at s = 0, 
it must be positive when s is positive and small. It follows that the supremum 
φ(a) of the function sa − log M(s) over all s ≥ 0 is also positive. In particular, 
for any fixed a > 0, the probability P(Sn ≥ na) decays at least exponentially 
fast with n. 

sExample: For a standard normal random variable X , we have M(s) = e
2/2 . 

Therefore, sa − log M(s) = sa − s2/2. To maximize this expression over all 
s ≥ 0, we form the derivative, which is a − s, and set it to zero, resulting in 
s = a. Thus, φ(a) = a2/2, which leads to the bound 

P(X ≥ a) ≤ e−a2/2 . 

2.2 Lower bound 

Remarkably, it turns out that the estimate φ(a) of the decay rate is tight, under 
minimal assumptions. To keep the argument simple, we introduce some simpli­
fying assumptions. 

Assumption 1. 
(i) M(s) = E[esX ] < ∞, for all s ∈ R. 
(ii) The random variable X is continuous, with PDF fX . 
(iii) The random variable X does not admit finite upper and lower bounds. 
(Formally, 0 < FX (x) < 1, for all x ∈ R.) 

We then have the following lower bound.


Theorem 2. (Chernoff lower bound) Under Assumption 1, we have 

1
lim log P(Sn ≥ na) = −φ(a), (1) 

n→∞ n 

for every a > 0. 

We note two consequences of our assumptions, whose proof is left as an 
exercise: 

log M(s)
(a) lims→∞ = ∞; 

s 
(b) M(s) is differentiable at every s. 

The first property guarantees that for any a > 0 we have lims→∞(log M(s)− 
sa) = ∞. Since M(s) > 0 for all s, and since M(s) is differentiable, it follows 
that log M(s) is also differentiable and that there exists some s∗ ≥ 0 at which 
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log M(s) − sa is minimized over all s ≥ 0. Taking derivatives, we see that such 
a s∗ satisfies a = M �(s∗)/M(s∗), where M � stands for the derivative of M . In 
particular, 

φ(a) = s∗a − log M(s∗). (2) 

Let us introduce a new PDF 
s∗xe

fY (x) = fX (x). 
M(s∗)

This is a legitimate PDF because 

fY (x) dx =
1 

e s
∗xfX (x) dx =

1 
M(s∗) = 1. 

M(s∗) M(s∗) 
· 

The moment generating function associated with the new PDF is 

MY (s) = 
1 

e sx e s
∗xfX (x) dx = 

M(s + s∗) 
. 

M(s∗) M(s∗) 

Thus, 
1 d �� M �(s∗)

E[Y ] = M(s + s∗)� = = a,
M(s∗) 

· 
ds s=0 M(s∗) 

where the last equality follows from our definition of s∗. The distribution of Y 
is called a “tilted” version of the distribution of X . 

Let Y1, . . . , Yn be i.i.d. random variables with PDF fY . Because of the 
close relation between fX and fY , approximate probabilities of events involving 
Y1, . . . , Yn can be used to obtain approximate probabilities of events involving 
X1, . . . , Xn. 

We keep assuming that a > 0, and fix some δ > 0. Let � � n �� 1 � 
B = (x1, . . . , xn) � a − δ ≤ xi ≤ a + δ ⊂ Rn . 

n 
i=1 

Let Sn = X1 + . . . + Xn and Tn = Y1 + . . . + Yn. We have 

P Sn ≥ n(a − δ) ≥ P � 
n(a − δ) ≤ Sn ≤ n(a + δ) 

= fX (x1) fX (xn dxn· · · 
(x1,...,xn)∈B 

) dx1 · · · 

= 
(x1,...,xn)∈B 

(M(s∗))n e−s∗x1 fY (x1) e−s∗xn fY (xn) dx1 · · · dxn· · · 

≥ (M(s∗))n e−ns∗(a+δ)

(x1,...,xn)∈B 
fY (x1) · · · fY (xn) dx1 · · · dxn 

= (M(s∗))n e−ns∗(a+δ) P(Tn ∈ B). (3) 
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The second inequality above was obtained because for every (x1, . . . , xn)] ∈ B, 
we have x1 + + xn ≤ n(a + δ), so that e−s∗x1 e−s∗xn ≥ e−ns∗(a+δ).· · · · · · 

By the weak law of large numbers, we have 

P(Tn ∈ B) = P 
�Y1 + · · · + Yn ∈ [na − nδ, na + nδ] 

� 
1, 

n 
→ 

as n → ∞. Taking logarithms, dividing by n, and then taking the limit of the 
two sides of Eq. (3), and finally using Eq. (2), we obtain 

1
lim inf log P(Sn > na) ≥ log M(s∗) − s∗a − δ = −φ(a) − δ. 
n→∞ n 

This inequality is true for every δ > 0, which establishes the lower bound in 
Eq. (1). 
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