MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085J	Fall 2008
Lecture 21	11/24/2008

THE POISSON PROCESS CONTINUED

Readings:

Posted excerpt from Chapter 6 of [BT, 2nd edition], as well as starred exercises therein.

1 MEMORYLESSNESS IN THE POISSON PROCESS

The Poisson process inherits the memorylessness properties of the Bernoulli process. In particular, if we start watching a Poisson process at some time t^* , or at some causally determined random time S, the process we will see is a Poisson process in its own right, and is independent from the past. This is an intuitive consequence of the close relation of the Poisson and Bernoulli processes. We will give a more precise statement below, but we will not provide a formal proof. Nevertheless, we will use these properties freely in the sequel.

We first introduce a suitable definition of the notion of a stopping time. A nonnegative random variable S is called a stopping time if for every $s \ge 0$, the occurrence or not of the event $\{S \le s\}$ can be determined from knowledge of the values of the random variables N(t), $t \le s$.¹

Example: The first arrival time T_1 is a stopping time. To see this, note that the event $\{T_1 \leq s\}$ can be written as $\{N(s) \geq 1\}$; the occurrence of the latter event can be determined from knowledge of the value of the random variable N(s).

The arrival process $\{M(t)\}\$ seen by an observer who starts watching at a stopping time S is defined by M(t) = N(S+t) - N(S). If S is a stopping time, this new process is a Poisson process (with the same parameter λ). Furthermore, the collection of random variables $\{M(t) \mid t \geq 0\}$ (the "future" after S) is independent from the collection of random variables $\{N(\min\{t,S\}) \mid t \geq 0\}$ (the "past" until S).

¹In a more formal definition, we first define the σ -field \mathcal{F}_s generated by all events of the form $\{N(t) = k\}$, as t ranges over [0, s] and k ranges over the integers. We then require that $\{S \leq s\} \in \mathcal{F}_s$, for all $s \geq 0$.

6.436J / 15.085J Fundamentals of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.