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LECTURE 27 
Birth-death processes 

27.1. General birth-death processes 

An important and a fairly tractable class of infinite continuous time M.c. is a birth-death process. 
Loosely speaking this is a process which combines the property of a random walk with reflection 
at zero, studied in the previous lecture and continuous time nature of the transition times. The 
process is describe as follows. The state space is Z+. To specify the transition we use the 
”exponential clock” model. To each state n ≥ 0 two exponential clocks with rates λn, µn are 
attached. Assume the current state is X(t) = n > 0. If the clock corresponding to rate λn 

expires first, the chain moves to the state n + 1 at time t + U . Otherwise, it moves to the state 
d d

n − 1 at time t + V . Formally, let U = Exp(λn), V = Exp(µn) be independent. If U < V , then 
X(t+U) = n+1. If V < U , then X(t+V ) = n−1. The case U = V occurs with probability zero, 
so it is ignored. In the special case n = 0 we assume that we only have a r.v. U and the chain 
moves into the state 1 after time U . Using the language of embedded M.c. we can alternatively 

d
describe the process as follows. Assume X(t) = n. Then a random time U = Exp(λn + µn) the 
chain moves to a new state which is n+1 with probability λn/(λn +µn), or n−1 with probability 
µn/(λn + µn). 

One can characterize the dynamics of birth-death processes in terms of a certain family of 
differential equations. Recall, that in addition to memoryless property, the exponential distribu­

tion has the following property: if U = 
d 

Exp(λ) then for every t, P(U ∈ [t, t + h)) = λh + o(h). 
From this obtain the following relation 

⎧ ⎪⎪⎨ ⎪⎪⎩


λnh + o(h), if m = 1; 
µnh + o(h), if m = −1; 

if m = 0;
P(X(t + h) = n + m|X(t) = n) =


1 − λnh − µnh + o(h), 
o(h), if |m| > 1;


1 



� 

� 
�

�

2 , FUNDAMENTALS OF PROBABILITY. 6.436/15.085 

Fix� an arbitrary state k0 and let pn(t) = P(X(t) = n|X(0) = k0). We have pn(t + h) = 

j pj (t)P(X(t + h) = n|X(t) = j). Assume n > 0. Then we can rewrite the expression above as 

pn(t + h) = pn−1(t)(λn−1h + o(h)) 

+ pn+1(t)(µn+1h + o(h)) 

+ pn(t)(1 − λnh − µnh + o(h)) 

+ o(h)( pj (t)) 
j=� n−1,n,n+1 

Note that j=n−1,n,n+1 pj (t) ≤ 1, so the last term in the sum is simply o(h). We conclude 

pn(t + h) − pn(t)
= λn−1pn−1(t) + µn+1pn+1(t) − (λn + µn)pn(t) + o(1). 

h 
By taking the limit h 0, we obtain a system of differential equations → 

(27.1) ṗn(t) = λn−1pn−1(t) + µn+1pn+1(t) − (λn + µn)pn(t) 

The case n = 0 is obtained similarly and simplifies to 

(27.2)	 ṗ0(t) = µ1p1(t) − λ0p0(t). 

The initial condition for this system of equations is pk0 (0) = 1, pj (0) = 0, j = k0. 

27.2. Steady state distribution 

The system of differential equations we derived gives us a very good “hint” at what should be 
the stationary distribution, if one exists. Note that since all the states communicate, then one 
can have only one stationary distribution. We now use this system of differential equations to 
derive the stationary distribution. Then we will see an alternative way of deriving it using the 
condition π�G = 0 stated in the last lecture. 

Steady state distribution is, by definition, a distribution which is time invariant. Thus we 
ask the following question: what should be a distribution π such that if we initialize our M.c. at 
π at time zero, as opposed a fixed state k0, we get the same distribution at every time t? Clearly, 
for this we must have that all derivatives ṗn(t) vanish and all pn(t) = pk are constants. Thus we 
must have the following system of equations: 

(27.3)	 λn−1pn−1 + µn+1pn+1 − (λn + µn)pn = 0, n ≥ 1 

(27.4)	 µ1p1 − λ0p0 = 0. 

On the other hand, if we initialize our M.c. at time zero with distribution π = p = (pn), n ≥ 0, 
then at every time t we obtain the same distribution, as the system of functions pn(t) = p, ∀t ≥ 0 
solves (27.1),(27.2). Recursively solving this system we find that 

(27.5)	 pn = 
λ0λ1 · · · λn−1 

p0 � 
µ1µ2 · · · µn 

Since we must also have that n≥0 pn = 1, then we must have 

(27.6)	 p0 = 
� 
1 + 

� λ0λ1 · · · λn−1 
�−1 

, 
n≥1 

µ1µ2 · · · µn 
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Clearly, this has a solution iff 

(27.7) 
� λ0λ1 · · · λn−1 

< ∞. 
n≥1 

µ1µ2 · · · µn 

We arrive at the following result. 

Theorem 27.8. A birth-death process with parameters λn, µn has a stationary distribution if 
and only if the condition (27.7) holds. In this case the stationary distribution is unique and is 
given by (27.6),(27.5). 

There is a simpler alternative way of deriving the stationary distribution. Recall the condition 
π�G, where G = (gi,j ) is the generator matrix – the matrix of rates. In this case we have 
gn,n+1 = λn, gn,n−1 = µn, gn,n = −(λn + µn), n ≥ 1 and g0,1 = λ0, g0,0 = −λ0. Then the equation 
π�G = 0 translates into (27.3),(27.4). 

Even a faster way, although the rigorization of this approach is based on the reversibility 
theory which we did not cover, is as follows. Observe that every time there is a transition from 
the state n to the state n + 1 there must be a reverse transition (otherwise the state 0 will not be 
ever visited after some finite time period). In steady state the probability of transition n n+1 →
occurring at a given time interval [t, t + h] is πn(λnh + o(h)). The transition n + 1 n occurs →
in the same time interval with probability πn+1(µn+1h + o(h)). Since the two are the same, we 
obtain πnλn = πn+1µn+1, which gives us the same solution (27.6),(27.6). These equations are 
sometimes called balance equations for an obvious reason. 

27.3. Queueing systems 

One of the immediate applications of birth-death processes is queueing theory. Consider the 
following system, known broadly as M/M/1 queueing system (M/M standing for memoryless 
arrival, memoryless service distribution). We have a server which serves arriving customer. 

d
Serving time for the n-th customer takes a random amount of time which is = Exp(µ). Customers 
arrive to the system according to the Poisson process with rate λ. Whenever there are no 
customers in the system, the server idles. Let L(t) denote the number of customers at time t. 
What is the distribution of L(t)? What is the steady state distribution of L(t) if any exists? It 
turns out that L(t) is described exactly as the birth-death process with rates λn = λ, µn = µ. 
Indeed if L(t) = n > 0 then the next transition will occur either if there is an arrival, or if there 
is a service completion. Thus the transition occurs when the earlier of the two ”exponential 

d
clocks” ticks. This happens at a random time = Exp(λ + µ) and the transition is to n + 1 with 
probability λ/(λ + µ) and to n − 1 with probability µ/(λ + µ). When L(t) = 0 the only change 

d
is due to an arrival. So after a random time = Exp(λ) we have a transition to state 1. We 
see that indeed we have a birth-death process. Clearly, the condition (27.7) holds if and only if 
ρ = λ/µ < 1 and, in this case, we we obtain the following form of the stationary distribution. 

p0 = 
� 
1 + 

� 
ρn 

�−1 
= 1 − ρ, 

n≥1 

pn = (1 − ρ)ρn . 

There is an intuitive reason why we need condition ρ < 1. When ρ > 1 the customers arrive at 
a rate faster than service rate and on average queue builds up at a linear rate. Contrast this 
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with the reflected random walk (essentially the same model except it is discrete time) and the 
condition 1 − p < p for existence of steady state. The parameter ρ is called traffic intensity 
and plays a very important role in the theory of queueing systems. For one thing notice that in 
steady state p0 = P(L = 0) = 1 − ρ. On the other hand, from the general theory of discrete and 
continuous time M.c. we know that p0 is the average fraction of time the system spends in this 
state. Thus 1 − ρ is the average time the server is idle. Alternatively, ρ is the average time the 
system is busy. Hence the term “traffic intensity”. 

Consider now the following variant of a queueing system, known as M/M/∞ system. Here 
d

we have infinitely many servers. Each service time is again = Exp(µ) and the arrival occurs 
according to a Poisson process with rate λ. The difference is that there is no queue any more 
as, due to infinity of servers, every customer gets instantly to be served. Let L(t) be the number 
of customers being served at time t. It is not hard to see that this corresponds to a birth-death 
process with parameters λn = λ, µn = µn. The arrival parameter explained as before. The 
service rate being µn is explained as follows: when there are n customers being served the next 
transition occurs at a time which is minimum of an arrival time till the next customer or the 

d d
smallest of the n service time. The former is = Exp(λ), the latter = Exp(nµ), hence µn = µn. 
Let ρ = λ/µ. In this case we find the stationary distribution as � � ρn �−1 

p0 = = e−ρ , 
n! 

n≥0 

ρn 

pn = e−ρ . 
n! 

In particular, the distribution is a familiar Pois(ρ). The system always has a steady state 
distribution, irrespectively of the values λ, µ. This is explained by the fact that we have infinitely 
many servers and the queue disappears. 

27.4. References 

• Sections 6.11, [1]. 
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