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BACKGROUND MATERIAL ON SETS AND REAL ANALYSIS 

1 SETS 

A set is a collection of objects, which are the elements of the set. If A is a set 
and x is an element of A, we write x ∈ A. If x is not an element of A, we write 
x ∈/ A. A set can have no elements, in which case it is called the empty set, 
denoted by Ø. 

Sets can be specified in a variety of ways. If A contains a finite number of 
elements, say x1, x2, . . . , xn, we write it as a list of the elements, in braces: 

A = {x1, x2, . . . , xn}. 

For example, the set of possible outcomes of a die roll is {1, 2, 3, 4, 5, 6}, and the 
set of possible outcomes of a coin toss is {H,T }, where H stands for “heads” 
and T stands for “tails.” 

More generally, we can consider the set of all x that have a certain property 
P , and denote it by 

{x | x satisfies P }. 

(The symbol “ | ” is to be read as “such that.”) For example, the set of even 
integers can be written as {k | k/2 is integral}. Similarly, the set of all real 
numbers x in the interval [0, 1] can be written as {x | 0 ≤ x ≤ 1}. 

If A contains infinitely many elements x1, x2, . . ., that can be enumerated in 
a list (so that the elements are in a one-to-one correspondence with the positive 
integers), we write 

A = {x1, x2, . . .}, 

and we say that A is countably infinite. For example, the set of even inte­
gers can be written as {0, 2, −2, 4, −4, . . .}, and is countably infinite. The term 
countable is sometimes used to refer to a set which is either finite or countably 
infinite. A set which is not countable is said to be uncountable. 

If every element of a set A is also an element of a set B, we say that A is a 
subset of B, and we write A ⊂ B or B ⊃ A. If A ⊂ B and A ⊂ B, the two 
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sets are equal, and we write A = B.1 It is sometimes expedient to introduce a 
universal set, denoted by Ω, which contains all objects that could conceivably 
be of interest in a particular context. Having specified a context in terms of a 
universal set Ω, one then only considers sets A that are subsets of Ω. 

2 SET OPERATIONS 

The complement of a set A, with respect to a universal set Ω, is the set {x ∈
Ω | x /∈ A} of all elements of Ω that do not belong to A, and is denoted by Ac . 
Note that Ωc = Ø. 

The union of two sets A and B is the set of all elements that belong to A or 
B (or both), and is denoted by A ∪ B. The intersection of two sets A and B is 
the set of all elements that belong to both A and B, and is denoted by A ∩ B. 
Thus, 

A ∪ B = {x | x ∈ A or x ∈ B}, 

and 
A ∩ B = {x | x ∈ A and x ∈ B}. 

We also define 

A \ B = A ∩ Bc = {x | x ∈ A and x /∈ B}, 

which is the set of all elements that belong to A but not in B. 
We will often deal with the union or the intersection of several, even in­

finitely many sets, defined in the obvious way. In particular, if I is a (possibly 
infinite) index set, and for each i ∈ I we have a set Ai, the union of these sets is 
defined as 

 

Ai = {x | x ∈ Ai for some i ∈ I}, 
i∈I 

and their intersection is defined as 

Ai = {x | x ∈ Ai for all i ∈ I}. 
i∈I 

In case we are dealing with the union or intersection of countably many sets Ai, 
the notation ∪∞ Ai and ∪∞ Ai, respectively, is used. i=1 i=1

Two sets are said to be disjoint if their intersection is empty. More generally, 
several sets are said to be disjoint if no two of them have a common element. 

1Some texts use the notation A ⊆ B to indicate that A is a subset of B, and reserve the 
notation A ⊂ B for the case where A is a proper subset of B, i.e., a subset of B which is not 
equal to B. 
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Disjoint sets are also said to be mutually exclusive. A collection of sets is said 
to be a partition of a set A if the sets in the collection are disjoint and their 
union is A. 

2.1 The Algebra of Sets 

Set operations have several properties, which are elementary consequences of 
the definitions. Some examples are: 

A ∪ B = B ∪ A, A ∩ B = B ∩ A, 
A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) = (A ∩ B) ∩ C, 
A ∩ (B ∪ C) (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) (A ∪ B) ∩ (A ∪ C),= =


(Ac)c = A, A ∩ Ac = Ø,

A ∪ Ω = Ω, A ∩ Ω = A.


Two particularly useful properties are given by De Morgan’s laws which 
state that 



 c � � c 

 
Ai = Ai

c , Ai = Ai
c . 

i∈I i∈I i∈I i∈I 

To establish the first law, suppose that x ∈ (∪i∈I Ai)c. Then, x /∈ ∪i∈I Ai, which 
implies that for every i ∈ I , we have x /∈ Ai. Thus, x belongs to the complement 
of every Ai, and x ∈ ∩i∈I A

c
i . This shows that (∪i∈I Ai)c ⊂ ∩i∈I A

c
i . The 

reverse inclusion is established by reversing the above argument, and the first 
law follows. The argument for the second law is similar. 

3 NOTATION: SOME COMMON SETS 

We now introduce the notation that will be used to refer to some common sets: 

(a) R denotes the set of all real numbers; 

(b) R denotes R ∪ {−∞, ∞}, the set of extended real numbers. 

(c) Z denotes the set of all integers; 

(d) N denotes the set of natural numbers (the positive integers). 

Also, for any a, b ∈ R, we use the following notation: 

(a) [a, b] denotes the set {x ∈ R | a ≤ x ≤ b}; 

(b) (a, b) denotes the set {x ∈ R | a < x < b}; 
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(c)	 [a, b) denotes the set {x ∈ R | a ≤ x < b}; 

(d)	 (a, b] denotes the set {x ∈ R | a < x ≤ b}. 

We finally introduce some definitions related to products of sets. 

(a) The Cartesian product of n sets A1, . . . , An, denoted by A1 × A2 × · · · × 
An, or i

n 
=1 Ai for short, is the set of all n-tuples that can be formed by 

picking one element from each set, that is, 

n

Ai = {(a1, . . . , an) | ai ∈ Ai, ∀ i}. 
i=1 

The set A × A is also denoted by A2. The notation An is defined similarly. 

(b) The Cartesian product	 ∞
i=1 Ai of an infinite sequence of sets Ai is defined 

as the set of all sequences (a1, a2, . . .) where ai ∈ Ai for each i. The simpler 
notation A∞ is used if Ai = A for all i. 

(c) The set of all subsets of a set A is denoted by 2A . 

(d) Given two sets A and B, AB stands for the set of functions from B to A. 

As defined above, a sequence (a1, a2, . . .) of elements of a set A belongs to 
A∞. However, such a sequence can also be viewed as a function from N into A, 
which belongs to AN. Thus, there is a one-to-one correspondence between A∞ 

and AN . 
In the special case where A = {0, 1}, a sequence (a1, a2, . . .) can be iden­

tified with a subset of N, namely the set {n ∈ N an = 1}. We conclude that 
there is a one-to-one correspondence between {0, 

|
1}∞, {0, 1}N, and 2N . 

4 REMARKS ON THE CARDINALITY OF SETS 

We collect here some facts that are useful in distinguishing countable and un­
countable sets. 
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Theorem 1. 

(a) The union of countably many countable sets is a countable set. 

(b) If A is finite, of cardinality n, then 2A has cardinality 2n . 

(c) The Cartesian product of finitely many countable sets is countable. 

(d) The set of rational numbers is countable. 

(e) The set {0, 1}∞ is uncountable. 

(f) The Cartesian product of infinitely many sets (with at least two elements 
each) is uncountable. 

(g) If A is infinite, then 2A is uncountable. 

(h) An interval of real numbers of the form [a, b], with a < b, is uncountable, 
and the same is true for the set R of real numbers. 

Proof. 

(a) Left as an exercise. 

(b) When choosing a subset of A, there are two choices for each element of A: 
whether to include it in the subset or not. Since there are n elements, with 
two choices for each, the total number of choices is 2n . 

(c) Suppose that A and B are countable sets, and that A = {a1, a2, . . .}, B = 
{b1, b2, . . .}. We observe that 



∞ � � 
A × B = .{ai} × B 

i=1 

For any i, there is a one-to-one correspondence between elements of B and 
elements of {ai} × B. Therefore {ai} × B is countable. Using part (a) of 
the theorem, it follows that A × B is countable. 

We continue by induction. We fix some k ≥ 2 and use the induction hy­
pothesis that the Cartesian product of k or fewer countable sets is countable. 
Suppose that the sets A1, . . . , Ak+1 are countable. We observe that the set 
A1 × · · ·× Ak+1 is essentially the same as the set (A1 × · · ·× Ak) × Ak+1, 
which is a Cartesian product of two sets. The first is countable, by the induc­
tion hypothesis; the second is countable by assumption. The result follows. 

(d) Left as an exercise. 
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(e) Suppose, in order to derive a contradiction, that the elements of {0, 1}∞ 

(each of which is a binary sequences) can be arranged in a sequence s1, s2, . . .. 
Consider the binary sequence s whose kth entry is chosen to be different 
from the kth entry of the sequence sk. This sequence s is certainly an el­
ement of {0, 1}∞, but is different from each of the sequences sk, by con­
struction. This means that the sequence s1, s2, . . . cannot exhaust all of the 
elements of {0, 1}∞ and therefore the latter set is uncountable. 

(f) Follows from (e). 

(g) Follows from (e) since 2A has at least as many elements as 2N, which can 
be identified with {0, 1}∞. 

(h) Consider the set of sequences (a1, a2, . . .) with values in {0, 1}. This set 
is uncountable by part (v). To any sequence, we associate the number 
∞ . Note that every sequence results in a different number. Iti=1 ai3−i 

follows that the set of numbers of this form is also uncountable. This set 
of numbers is contained in [0, 1]; hence [0, 1] is uncountable. Any interval 
[a, b] has a one-to-one correspondence with the interval [0, 1] and is also 
uncountable. 

Let us take the idea in the proof of part (h) one step further. Let a = 
(a1, a2, . . .) be a binary sequence (with elements in {0, 1}). To any sequence 
a, we associate the real number 

∞
ai

f(a) = 
2i . 

i=1 

Given that every real number in the interval [0, 1] can be expressed in binary, 
it follows that f maps {0, 1}∞ onto [0, 1]. This mapping is not one-to-one be­
cause, for example, the sequences (0, 1, 1, . . .) and (1, 0, 0, . . .) map to the same 
number; that is, the real number 1/2 has two different binary expansions. It can 
be verified that this phenomenon occurs whenever we have a binary sequence 
that ends with an infinite string of ones, and only then. It follows that there 
is a one-to-one correspondence between the set [0, 1) and the set of sequences 
that do not end with an infinite string of ones. Furthermore, it can be checked 
that the set of excluded sequences is countable. We have therefore established a 
one-to-one correspondence between the set [0, 1) and a set of binary sequences 
(namely, the set of all binary sequences except for the excluded ones). This cor­
respondence turns out to be useful in linking together some seemingly different 
probabilistic models. 

Notice that in the proof of part (h) we used 3i instead of 2i . By doing so, 
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we avoided the difficulty of multiple expansions of the same number, but on the 
other hand the numbers so constructed do not cover the interval [0, 1). 

5 SEQUENCES AND LIMITS 

Formally, a sequence of elements of a set A is a mapping f : N A. Let 
ai = f(i). The corresponding sequence is often written as (a1, a2, . . .

→
) or {ak}

for short. 
Given a sequence {ak} and an increasing sequence of real numbers {ki}, 

we can construct a new sequence whose ith element is aki . This new sequence 
is called a subsequence of {ak}. Informally, a subsequence of {ak} is obtained 
by skipping some of the elements of the original sequence. 

Definition 1. 

(a) A sequence {xk} of real numbers (also called a “real sequence”) is said to 
converge to a real number x if for every � > 0 there exists some (positive 
integer) K such that | | < � for every k ≥ K.xk − x

(b) A real sequence {xk} is said to converge to ∞ (respectively, −∞) if for 
every real number c there exists some K such that xk ≥ c (respectively, 
xk ≤ c) for all k ≥ K. 

(c) If a real sequence converges to some x (possibly infinite), we say that x is 
the limit of xk; symbolically, limk→∞ xk = x. 

(d) A real sequence {xk} is called a Cauchy sequence if for every � > 0, there 
exists some K such that |xk − xm| < � for all k ≥ K and m ≥ K. 

(e) A real sequence {xk} is said to be bounded above (respectively, below) if 
there exists some real number c such that xk ≤ c (respectively, xk ≥ c) for 
all k. 

(f) A real sequence {xk} is called bounded if the sequence {|xk|} is bounded 
above. 

(g) A real sequence is said to be nonincreasing (respectively, nondecreasing) 
if xk+1 ≤ xk (respectively, xk+1 ≥ xk) for all k. A sequence that is either 
nonincreasing or nondecreasing is called monotonic. 

The following result is a fundamental property of the real-number system, 
and is presented without proof. 
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Theorem 2. Every monotonic real sequence converges to an extended real

number. If the sequence is also bounded, then it converges to a real number.


We continue with the definition of some key quantities associated with sets 
or sequences of real numbers. 

Definition 2. 

(a) The supremum (or least upper bound) of a set A of real numbers, denoted 
by sup A, is defined as the smallest extended real number x such that x ≥ y 
for all y ∈ A. 

(b) The infimum (or greatest lower bound) of a set A of real numbers, denoted 
by inf A, is defined as the largest extended real number x such that x ≤ y 
for all y ∈ A. 

(c) Given a sequence {xk} of real numbers, the supremum of the sequence, 
denoted by supk xk, is defined as sup{xk | k = 1, 2, . . .}. The infimum of 
a sequence is similarly defined. 

(d) The upper limit of a real sequence {xk}, denoted by lim supk→∞ xk, is 
defined to be equal to limm→∞ sup{xk | k ≥ m}. 

(e) The lower limit of a real sequence {xk}, denoted by lim infk→∞ xk, is 
defined to be equal to limm→∞ inf{xk | k ≥ m}. 

Remarks: 

(a) It turns out that the supremum and infimum of a set of real numbers is guar­
anteed to exist. This is a direct consequence of the way the real-number 
system is constructed (see, e.g., [R]). It can also be proved by building on 
Theorem 2. 

(b) The infimum or supremum of a set need not be an element of a set. For 
example, if A = {1/k | k ∈ N}, then inf A = 0, but 0 ∈/ A. 

(c) If sup A happens to also be an element of A, then sup A is the maximum 
(i.e., the largest element) of A, and in that case, it is also denoted as max A. 
Similarly, if inf A is an element of A, it is the minimum of A, and is denoted 
as min A. 

(d) If a set or a sequence of real numbers has arbitrarily large elements (that is, 
no finite upper bound), then the supremum is equal to ∞. Similarly, if it has 
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arbitrarily small elements (that is, no finite lower bound), then the infimum 
is equal to −∞. 

(e) A careful application of the definitions shows that sup Ø = −∞ and inf Ø = 
∞. On the other hand, if a set is nonempty, then inf A ≤ sup A. 

(f) A sequence need not have a limit (e.g., consider the sequence xn = (−1)n . 
On the other hand, the upper and lower limits of a real sequence are al­
ways defined. To see this, let ym = sup{xk | k ≥ m}. The sequence 
{ym} is nonicreasing and therefore has a (possibly infinite) limit. We have 
lim sup xk = limm→∞ ym, and the latter limit is guaranteed to exist, m→∞ 
by Theorem 2. A similar argument applies to the lower limit. 

Theorem 3. Let {xk} be a real sequence. 

(a) There holds 

inf xk ≤ lim inf xk ≤ lim sup xk ≤ sup xk. 
k k→∞ k→∞ k 

(b) The sequence {xk} converges (to an extended real number) if and only if 
lim infk→∞ xk = lim supk→∞ xk, and in that case, both of these quantities 
are equal to the limit of xk. 

The next definition refers to convergence of finite-dimensional real vectors.


Definition 3. 

(a) A sequence {xk} of vectors in Rn is said to converge to some x ∈ Rn if the 
ith coordinate of xk converges to the ith coordinate of x, for every i. The 
notation limk→∞ xk = x is used again. 

(b) A sequence of vectors is called a Cauchy sequence (respectively, bounded) 
if each coordinate sequence is a Cauchy sequence (respectively, bounded). 

(c) We say that some x ∈ Rn is a limit point of a sequence {xk} in Rn if there 
exists a subsequence of {xk} that converges to x. 

(d) Let A be a subset of Rn. We say that x ∈ Rn is an limit point of A if there 
exists a sequence {xk}, consisting of elements of A, different from x, that 
converges to x. 
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We summarize some key facts about convergence of vector-valued sequences, 
see, e.g., [R]. 

Theorem 4. 

(a) A bounded sequence in Rn has at least one limit point. 

(b) A bounded sequence in Rn converges if and only if it has a unique limit 
point (in which case, the limit point is also the limit of the sequence). 

(c) A sequence in Rn converges to an element of Rn if and only if it is a Cauchy 
sequence. 

(d) Let {xk} be a real sequence. If lim supk→∞ xk (respectively, lim infk→∞ xk) 
is finite, then it is the largest (respectively, smallest) limit point of the se­
quence {xk}. 

6 LIMITS OF SETS 

Consider a sequence {An} of sets. There are several ways of defining what it 
means for the sequence to converge to some limiting set. The definitions that 
will be most useful for our purposes are given below. 

Definition 4. 

(a) We define lim sup An as the set of all elements ω that belong to in­n→∞
finitely many of the sets An. Formally, 

∞ �� � ∞

 
lim sup An = An . 

n→∞ 
k=1 n=k 

The notation {An i.o.} = lim sup An is also used.
n→∞


(b) We define lim infn→∞ An as the set of all ω that belong to all but finitely 
many of the sets An. Formally, 



 � ∞ �∞ � 
lim inf An = An . 
n→∞ 

k=1 n=k 

(c) We say that A is the limit of the sequence An (symbolically, An A, 
or limn→∞ An = A) if A = lim infn→∞ An = lim sup An. 

→ 

n→∞ 
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Note that a sequence of sets An need not have a limit, but lim sup An 

and lim infn→∞ An are always well defined. 
n→∞ 

In order to parse the above definitions, note that ω ∈ ∪∞n=kAn if and only if 
there exists some n ≥ k such that ω ∈ An. We then see that ω belongs to the 
intersection ∩∞k=1 ∪∞n=k An if and only if for every k, there exists some n ≥ k 
such that ω ∈ An; this is equivalent to requiring that ω belong to infinitely many 
of the sets An. 

Similarly, x k=1 ∩∞n=k An if and only if for some k, x belongs to ∈ ∪∞
∩∞n=kAn. Equivalently, for some k, x belongs to all of the sets Ak, Ak+1, . . ., 
i.e., x belongs to all but finitely many of the sets An. 

When, the sequence of sets {An} is monotonic, the limits turn out to behave 
as expected. 

Theorem 5. 

(a) If An is an increasing sequence of sets (An ⊂ An+1, for all n), then 
limn→∞ An exists and is equal to ∪∞n=1An. 

(b) If An is an decreasing sequence of sets (An ⊃ An+1, for all n), then 
limn→∞ An exists and is equal to ∩∞n=1An. 

Reasoning about a sequence of functions is often easier than reasoning about 
the convergence of a sequence of sets. A link between the two notions of con­
vergence is provided by the following. 

Definition 5. The indicator function IA : Ω → {0, 1} of a set A is defined 
by � 

IA(ω) = 
1, if ω ∈ A, 

0, if ω /∈ A. 

We then have the following result, whose proof is left as an exercise.


Theorem 6. We have limn→∞ An = A if and only limn→∞ IAn (ω) = 
IA(ω) for all ω. 
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