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Recitation 8 

Some common mistakes on the exam 

•	 While its true that 

{sup Xn � c} = �n�1 {Xn � c}, 
n 

it is not true that 

{sup Xn < c} = �n�1 {Xn < c}. 
n 

Indeed, what if Xn(�) = c − 1/n? 

•	 In what sense is a random variable defined by its cdf? If a random vari­
ables X,Y have the same cdf F (x), then 

P (X � (a, b]) = F (b) − F (a) = P (Y � (a, b]), 

and since the Borel �-field is generated by intervals (·, ·], it follows that 

P (X � B) = P (Y � B), 

for any Borel set B. So the cdf F (x) uniquely determines the probabilities 
P (X � B). 

On the other hand, if X,Y have the same cdf, this says nothing about 
X,Y as mappings from their sample spaces to R - they might not even be 
defined on the same space! Indeed, consider two examples. 

Let �1 = [0, 1], F1 = B([0, 1]), and let P1 be the Lebesgue measure µ. 
Consider the mapping X(�) = �. If x < 0, then P1(X � x) = 0; if 
x > 1, then P1(X � x) = 1; and if x � [0, 1], then P1(X � x) = 
P1([0, x]) = x. In other words, the cdf of X is the cdf of the uniform 
distribution on [0, 1]. 
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Now let �2 = [0, 2], F2 = B([0, 2]), and let P2 = (1/2)µ (we must have 
P2(�2) = 1, which is why we included the normalizing factor of 1/2). 
Now define X(�) = �/2. Then, if x < 0, then P2(X � x) = 0; if x > 1, 
then P2(X � x) = 1; and if x � [0, 1], then P (X � x) = P2([0, 2x]) = 
(1/2)2x = x. In other words, the cdf of X is again the cdf of the uniform 
distribution on [0, 1]. 

On the connection between uniform and coin toss models 

Let’s continue our discussion from the previous recitation on the connection 
between the uniform random variable an an infinite sequences of coin tosses. We 
had previously argued that if we generate a uniform random number on [0, 1], 
write it out in binary, and let Xi be its i’th digit, that P (Xi = 0) = P (Xi = 
1) = 1/2, and further that Xi are independent. In other words, the sequence 
X1, X2, . . . corresponds to an infinite sequence of coin tosses. 

Let’s now argue the other way, that if we view an infinite sequence of coin 
tosses by interpreting the i’th toss as the i’th binary digit of a number, the result 
will be a uniform random number in [0, 1]. 

•	 Let X1, X2, . . . be an infinite iid sequence of binary random variables with 
P (Xi = 0) = P (Xi = 1) = 1/2. Define 

Xi
Z = 

�
. 

2i 
i=1 

•	 We argue that U is a uniform random variable in [0, 1]. Indeed, 

k k + 1 1 
P (Z � [ , ]) = ,

2i 2i 2i 

since this event corresponds to the first i tosses coming up a certain way; 
here k/2i , (k + 1)/2i being numbers in [0, 1]; Hence we have 

l u l − u 
P (Z � [ , ] = ,

2i 2i 2i 

by additivity 1 . So, whenever I is a finite union of intervals whose end­
1Don’t be bothered by the fact that we haven’t taken care to make sure our intervals 

k k + 1 
[ , ],
2i 2i 

don’t overlap. Since P (Z � a) = 0 for any a (since Z = a means one of at most two sequences 
have occurred, and each sequence occurs with probability 0), worrying that the intervals overlap 
at the endpoints is a non-issue. 
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points are rational numbers with denominators which are powers of 2, 

P (Z � I) = l(I), 

where l stands for the length (i.e. lebesgue measure). Since the set of such 
I is a field, Caratheodory’s theorem implies that Z is the uniform random 
variable. 

Singular random variables 

•	 Not all random variables are continuous or discrete. Indeed, consider the 
following random variable. Toss a coin. If it lands on heads, X = 0. If it 
lands on tails, let X be a uniform random variable on [0, 1]. The resulting 
random variable X is neither continuous nor discrete. 

•	 The above random variable, however, is a mixture of continuous and dis­
crete random variables, in the sense there is a countable collection of 
points with positive mass, and once you remove them the random vari­
able has a density. However, some random variables are stranger than 
that, being neither continuous, nor discrete, nor a mixture of them. We 
describe one such random variable next. 

•	 Similar to the previous section, define 

Z � 
� 2Xi 

= . 
3i 

i=1 

In words, we generate an infinite sequence of 0s and 2s, and view them 
as the digits of the ternary expansion of a number. Intuitively, we “uni­
formly” generate a random number with no 1s in its ternary expansion. 

•	 Let C be the support of this random variable, that is, the set of numbers 
in [0, 1] with no 1s in their ternary expansion. Observe that if Ci is the set 
of numbers with i’th ternary digit not equal to 1 then 

C = �n�1Cn. 

•	 Observe that 
2 
l(�n−1Ci),l(�n

i=1Ci) = 
i=13 

since intersection with Cn amounts to removing the middle third out of 
every interval in �n−1Ci. A consequence of this is that 

i=1 

l(C) = 0. 
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•	 So, Z � is concentrated on a set of measure 0. This implies it can’t be 
continuous. Indeed, if it were, then it would have some density fZ� and 
then �

P (Z � � C) = fZ� (x)dx = 0, 
C 

since C has measure 0, which can’t be. 

•	 On the other hand, 
P (Z � = a) = 0, 

for all a � [0, 1]. This is because every number has at most two ternary 
expansions, each of which has probability 0 of occurring. So Z � can’t be 
discrete. 

•	 Moreover, Z � is not a mixture of continuous and discrete random vari­
ables; there is no sequence of positive masses we can remove so that the 
result would have a density. 

Finally, an aside. The set C is typically used as an example of an uncount­
able set having measure 0. We’ve already argued above that C has length 0. Its 
not hard to see that C is uncountable, since we can take the ternary expansion 
of every number in C , replace every 2 with a 1, and view the result as a binary 
expansion. This is a one-to-one map2from C to [0, 1], and we know the latter is 
uncountable. 

2There is the issue of some numbers having two ternary expansions; if we adopt the convention 
of never using the expansion which ends in an infinite sequence of 0s, the map will be one-to-one. 
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