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1 Review of Linear Algebra 

1. Observe that 
(AB)T = BT AT , 

since the i, j’th entry on the left is equal to the j, i’th entry of AB, which 
is the j’th row of A dot-producted with the i’th column of B. On the other 
hand, the (i, j)’th entry on the right is the i’th row of BT dot producted 
with the j’th column of AT . Since a row of X is the same as a column of 
XT , the two are the same. 

2. An implication is that zzT is symmetric: 

(zz T )T = (z T )T z T = zz T 

3. Suppose you have matrix A with columns a1, . . . , an and matrix B with 
rows bT 

1 , . . . , b
T . Then, n 

AB = 
� 

a1 · · · an 
� ⎛ ⎜ ⎝ 

bT 
1 
. . . 

⎞ ⎟ ⎠ = 
n� 

akb
T 
k 

bT k=1 
n 

Indeed, compare the (i, j)’th entry on both sides. 

2 Symmetric and Definite Matrices 

Definition 1. Let A be a square (n × n) symmetric matrix. 

(a) We say that A is positive definite, and write A > 0, if xT Ax > 0, for every 
nonzero x ∈ Rn . 

(b) We say that A is nonnegative definite, and write A ≥ 0, if xT Ax ≥ 0, for 
every x ∈ Rn . 

It is known (e.g., see any basic linear algebra text) that: 
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(a) The eigenvalues of a symmetric matrix are real. 

Proof: Recall that given a complex number 

z = a + bi, 

we define its complex conjugate 

z̄ = a − bi, 

and that conjugation obeys the following laws: 

z1 + z2 = z̄1 + z̄2 

z1z2 = z̄1z̄2 

The absolute value of a complex number can be written as 

|z|2 = zz̄. 

Now suppose 
Ax = λx. 

Observe that this equation still holds if we replace x by multiple of x; thus, 
we can assume without loss of generality that ||x||2 = 1. Then, 

n

x̄T Ax = λx̄T x = λ |xi|2 = λ||x||22 = λ (1) 
i=1 

Conjugating both sides of the equation, 

λ ¯ = ¯T Ax = x x,x T A¯

where we used the fact that the conjugate of a product/sum is the prod­
uct/sum of the conjugates, and that A is a real matrix. But λ ¯ is a scalar, so 
we can transpose the expression for it and get the same result: 

λ ¯ = (x T Ax̄)T = x̄T AT x = x̄T Ax (2) 

Comparing Eq. (1) with Eq. (2), we see that 

λ = ¯ λ,


which means that λ is real.
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(b) To each eigenvalue of a symmetric matrix, we can associate a real eigen­
vector. Eigenvectors associated with distinct eigenvalues are orthogonal; 
eigenvalues associated with repeated eigenvalues can always be taken to be 
orthogonal. Without loss of generality, all these eigenvectors can be nor­
malized so that they have unit length, resulting in an orthonormal basis. 

Proof: To see that eigenvectors can be taken to be real, take the real com­
ponent of the equation 

Ax = λx 

To show the orthogonality of eigenvectors, suppose v1, v2 are two eigenvec­
tors corresponding to distinct eigenvalues of A. Then, 

λ1v1 
T v2	 = (Av1)T v2 

= v1 
T AT v2 

= v1 
T Av2 

= λ2v1 
T v2 

where we used the fact that A = AT . Thus, if λ1 �= λ2, it follows that 
v1 · v2 = 0.


Thus, if A has n distinct eigenvalues, it has n real eigenvectors which are

orthogonal; these eigenvectors are therefore a basis for Rn .


We will skip the case of repeated eigenvalues.


(c) A positive definite matrix has n real and positive eigenvalues. 

(d) A nonnegative definite matrix has n real and nonnegative eigenvalues. 

Proof: Suppose 
Ax = λx, 

Then, as we argued before, λ is real, and x can be taken to be real with 
||x||2 = 1. Then, 

x T Ax = λxT x = λ, 

and the nonnegative (positive) definiteness of A implies that λ ≥ 0 (λ > 0). 

(e) The above essentially states that a symmetric definite matrix becomes diag­
onal after a suitable orthogonal change of basis.


Proof: Let v1, . . . , vn be the orthonormal eigenvectors of A corresponding

to eigenvalues λ1, . . . , λn. Let U be the matrix whose i’th row is vi. Then,


UT U = I, 
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since the vi are orthogonal. Moreover, ⎞⎛ ⎜⎝


λ1 
.AU = U
 ⎟⎠
. . 

λn 

Let us call the diagonal matrix on the right hand side D. We have: 

UT AU = D. (3) 

Now consider the change of basis defined by y = Ux. Given x = Uy, 
we want to find a representation of Ax in the new coordinates, i.e. we are 
looking for z such that 

AUy = Uz, 

which means 
UT AUy = z, 

or 
Dy = z. 

(f) The lecture notes make the following claim: as ||x||2 →∞, so does xT Ax. 

To prove this, decompose x as 

x = a1v1 + a2v2 + · · · anvn, 

where vi is the eigenvector of A corresponding to λi. We assume that we 
numbered the eigenvalues so that λ1 ≥ λ2 ≥ · · · ≥ λn. 

Multiplying by A, we have 

Ax = a1λ1v1 + a2λ2v2 + + λnanvn,· · · · · · 

which implies 
x T Ax = λ1a 21 + λ2a 22 + λna 2 

n· · · 

We lower bound this as 

x T Ax ≥ λn(a 2 2 a 2 ) = λn||x||2 
1 + a2 + n 2,· · · 

so if the right-hand side approaches infinity, so does the left-hand side. 
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3 Square roots 

Let us rewrite Eq. (3) as 

A = UDUT 

Now observe that the columns of U are the eigenvectors vi; and the rows of UT 

are λivi. Therefore, 
n

A = λivivi
T . 

i=1 

For nonnegative definite matrices, we have λi ≥ 0, which allows us to take 
square roots and define 

n
TB = λivivi . 

i=1 

We then observe that: 

(a) The matrix B is symmetric. 

Proof: Since vivi
T is symmetric, B is the sum of symmetric matrices and 

therefore symmetric. 

(b) We have B2 = A (this is an easy calculation). Thus B is a symmetric 
square root of A. 

Proof: We have that 
B = U ˆ ,DUT 

where D̂ denotes the diagonal matrix whose ii’th entry is 
√

λi. Then, 

B2 = U ˆ DUT D2UT = UDUT = A.DUT U ˆ = U ˆ

(c) The matrix B has eigenvalues 
√

λi. Therefore, it is positive (respectively, 
nonnegative) definite if and only if A is positive (respectively, nonnegative) 
definite. 

Proof: Since 
B = U ˆ ,DUT 

it follows that 
= U ˆBU D, 

which suggests that each column of U is an eigenvalue of B with eigenvec­
tor 
√

λi. 
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4 Covariance Matrices 

•	 The matrix Cov(X, X) is nonnegative definite.


Indeed,


z T Cov(X, X)z	 = z T E[(X − E[X])(X − E[X])T ]z 

= E[z T (X − E[X])(X − E[X])T z] 

Now define 
y = (X − E[X])T z, 

and observe that we have shown that 

z T Cov(X, X)z = E[y T y] = E[||y||2].2

Since the expectation of a nonnegative random variable is nonnegative, it 
follows that 

z T Cov(X, X)z ≥ 0,


for all z.


•	 Suppose Z = AY . Then, 

Cov(Z,Z) = ACov(Y, Y )AT 

Indeed, since E[Y ] = AE[Z], 

Z − E[Z] = A(Y − E[Y ]), 

and therefore 

Cov(Z,Z) = E[(Z − E[Z])(Z − E[Z])T ) 
= E[A(Y − E[Y ])(Y − E[Y ])T AT ] 
= ACov(Y, Y )AT 

•	 Suppose Yi, i = 1, . . . , n are uncorrelated. What is the variance of Z = 
aT Y , where a is some row vector?


Since Z is a scalar, its variance is equal to its covariance matrix (which is

of course 1 × 1). By the above formula,


n

σZ 
2 = a T σ2Ia = σ2 ai 

2 . 
i=1 
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5 Zero correlation versus independent 

We have proved in lecture that if (X, Y ) has a multivariate normal distribution, 
and if X is uncorrelated from Y , then X and Y are independent. 

Consider now the following example. Let X be a standard mormal. Let 
U be a discrete random variable, with P(U = −1) = P(U = 1) = 1/2. Let 
Y = UX . It can be seen that the conditional distribution of Y , given either value 
of U , is N(0, 1). Thus, the unconditional distribution of Y is also N(0, 1). 
Furthermore, E[XY ] = E[UX2] = E[U ] E[X2] = 0, so that X and Y are 
uncorrelated. On the other hand, we always have |Y | = |X|, which shows that 
X and Y are not independent. 

Is this example a contradiction of the earlier fact? No. The explanation is 
that in this example, X is normal, Y is normal, but (X, Y ) is not multivariate 
normal. (The multivariate normal property is a property of the joint distribution; 
normality of the marginals is not enough.) 

6 A generating function exercise 

The transform associated with N , the total number of living groups contacted 
about the MIT blood drive, is � �101 2 

MN (s) = + e s .
3 3

(a) Determine the probability mass function (PMF) of N , i.e. P(N = n). 
(b) Let the number K of people in any particular living group, be an inde­

pendent random variable with associated transform 

1 4se
MK (s) = 5

4 es 
. 

1 − 5 

Find pK (k) = P(K = k), E[K], and var(K). 
(c) Let L be the total number of people whose living groups are contacted 

about the blood drive. Determine the transform, the mean, and the variance 
associated with L. 

(d) Suppose that any particular person, whose living group is contacted, do­
nates blood with probability 1/4, and that all such individuals make their deci­
sions independently. Let D denote the total number of blood donors from the 
contacted living groups. Calculate the transform and mean associated with D, 
and the probability that there will be no donors at all. 
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Solution: (a) From the transform tables, N is binomial with PMF � �� �n � �10−n10 2 1 
pN (n) = , n = 0, 1, . . . , 10. 

n 3 3 

(b) The given transform MK (s) is e3s times the transform associated with 
a geometric PMF with parameter p = 1/5. Thus K = 3 + G where G is a 
geometric random variable with parameter p = 1/5. We have � �� �k−41 4 

pK (k) = p(1 − p)k−4 = , k = 4, 5, . . . 
5 5 

E[K] = 3 + 
1 

= 8, var(K) = 
1 − p 

= 20. 
p p2 

(c) L is the sum of a random number N of independent random variables 
each with transform MK (s). Hence ML(s) is obtained by replacing in MN (s) 
each occurrence of es by MK (s): �

1 2 
�10 

� 
1 2 

� 
1
5 e

4s 
��10 

ML(s) = + MK (s) = + 4 .
3 3 3 3 1 − 5 e

s 

We have � �
2

E[L] = E[K] E[N ] = 8 10 = 53.33,· · · 
3 

var(L) = var(K)E[N ]+(E[K])2 var(N) = 20
20

+82 10
2 1 

=
2480 

.· 
3 

· · 
3 
· 
3 9 

(d) D is the sum of a random number L of random variables each of which is 
Bernoulli with parameter 1/4. Hence MD(s) is obtained by replacing in ML(s) 
each occurrence of es by the Bernoulli transform MB (s) = 3/4 + (1/4)es. So � � ��10 

1 2 1
5 (

3
4 + 14 e

s)4 

MD(s) = 
3

+
3 4 (3 + 1 es) 

. 
1 − 5 4 4 

We have 
1

E[D] = E[L] E[B] = 53.33 = 13.33.· · 
4 

The probability P(D = 0) is obtained as � � �4 
�10 

1 1 3
lim MD(s) = + . 

s→−∞ 3 3 4 
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