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Convergence of Random Variables 

1	 Review of Definitions 

Let Xi, i = 1, . . . , be a collection of random variables. The sample space on 
which Xi is defined will be denoted by �i. Let X be a random variable on a 
sample space �. We will consider ways to make meaning of the statement “Xi 

converges to X .” 

The two following definitions assume � = �1 = �2 = · · · . 

Almost sure convergence. We will say that Xi converges to X almost surely if 
Xi(�) approaches X(�) for all � ≤ �, except possibly in a set of measure zero. 

Convergence in probability. We will say that Xi converges to X in probability 
if P (|Xi − X| > �) approaches 0 as i goes to infinity, for any � > 0.. 

The next definition does not require �i to be identical. 

Convergence in distribution. We will say that Xi converges to X in distribu­
tion if the function FXi converges to the function FX at all points where FX is 
continuous. 

2	 The relationship between convergence almost surely and convergence in 
probability 

Theorem. Suppose Xi converges to X almost surely. Then, Xi converges to X 
in probability. 

Proof. Fix � > 0. Define An(�) to be the set where Xn differs from X by at 
least �: 

An(�) = {w ≤ � : |Xn(w) − X(w)| > �.} 
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Let A(�) be the set of � which are in some An(�) infinitely often: 

A(�) = �� 
k=1 �

� 
n=k An(�). 

If � ≤ A(�), then Xn(�) cannot converge to X(�); this means that A(�) is a 
subset of a set of measure 0, and therefore 

P (A(�)) = 0. 

However, A(�) is the intersection of a decreasing sequence of sets; applying the 
continuity of probability, 

lim P (�� 
n=kAn(�)) = 0 

k�� 

Since Ak ∩ �� 
n=kAn(�), this implies 

lim P (Ak(�)) = 0, 
k�� 

which means that Xk converges to X in probability. 

Remark: The converse of the above theorem is not true. Suppose Xi converges 
to X in probability. It may be that Xi does not approach X almost surely. 

Indeed, let Xn be the random variable which takes value 1 with probability 
1/n, and value 0 with probability 1 − 1/n. Let X be the random variable thats 
identically zero. We have that Xn converges to X in probability: 

1 
P (|Xn − X| > �) ∪ , 

n 

for any positive �. As n approaches infinity, P (|Xn − X| > �) will approach 
zero. 

On the other hand, by the Borel-Cantelli lemma, Xn = 1 infinitely often 
with probability 1, so that P (A(�)) = 1 for any �. If Xn approached X almost 
surely, then we would have P (A(�)) = 0. 

The relationship between convergence in probability and convergence 
in distribution 

Theorem. Suppose Xi converges to X in probability. Then Xi converges to X 
in distribution. 
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Proof: Let Fi(x) denote the distribution function of Xi and F (x) denote the 
distribution function of X . We can write 

Fn(x) = P (Xn ∪ X) 

= P (Xn ∪ X,X ∪ x + �) + P (Xn ∪ x,X > x + �) 

∪ F (x + �) + P (|Xn − X| > �). 

This inequality holds for all n and �. It gives us an upper bound on Fn in terms 
of F . To obtain a lower bound, we argue as: 

F (x − �) = P (X ∪ x − �) 

= P (X ∪ x − �,Xn ∪ x) + P (X ∪ x − �,Xn > x) 

∪ Fn(x) + P (|Xn − X| > �) 

The last part can be rewritten as 

Fn(x) → F (x − �) − P (|Xn − X| > �). 

Let us now combine the upper and lower bounds: 

F (x − �) + P (|Xn − X| > �) ∪ Fn(x) ∪ F (x + �) + P (|Xn − X| > �). 

Again, note this equation holds for all � and for all n. Let us take the limit of 
both sides as n approaches infinity, and then as � � 0; we obtain that if F is 
continuous at x, then 

lim Fn(x) = F (x). 
n 

Remark: The converse of this theorem does not hold. Indeed, even assuming 
Xi approach X in distribution, they may not even be defined on the same space. 

We can, however, refine the question as follows. Suppose Xi approach X in 
distribution and � = �1 = �2 = · · · . Will it always be true that Xi approach 
X in probability? 

The answer is no. This was discussed in class: suppose X,X1, X2, . . . are 
all independent N(0, 1) Gaussians. Certainly, Xi converges to X in distribution, 
since all the distributions are equal. However, Xi − X = N(0, 2), which does 
not become concentrated around 0 as i grows. 
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4 Some special cases 

We now catalog some special cases when stronger statements can be made about 
the relationship between various types of convergence. 

Theorem: Suppose Xi converges to X in probability. Then there exists a se­
quence of integers n1, n2, . . . such that Xni converges to X almost surely. 

Proof: We know that P (|Xk − X| > 1 
i ) approaches 0 as k approaches ⊂; pick 

ni with the property that 

1 1 
P (|Xni − X| > ) < . 

i2 

Let Ai be the event that |Xni − X| > 1/i and let A be the event “Ai occurs 
infinitely often.” Note that Xni converges to X on Ac . But the Borel-Cantelli 
lemma says that the probability of A is zero. 

Theorem: Suppose Xi converges to a constant c in distribution. Then, Xi con­
verges to X in probability. 

Remark: Observe that since the constant random variable can be defined on any 
space, we do not run into problems when writing expressions like P (|Xi − c| > 

Proof: We have that 

P (|Xi − c| > �) = P (Xi > c + �) + P (Xi < c − �) 

∪ (1 − Fi(c + �)) + Fi(c − �). 

We know that Fi(x) converges to the function 1[c,+�)(x) for all x ≥= c. This 
means that Fi(c + �) approaches 1 and Fi(c − �) approaches 0 as i approaches 
infinity. Thus P (|Xi − c| > �) is sandwiched between 0 and a sequence that 
approaches 0 as i approaches infinity; therefore, it must approach zero. 

i 
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