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Poisson Processes

1 Counting processes

A stochastic process N (t), ¢ > 0 is said to be a counting process if N (¢) satisfies
the following properties:

1. N(t) > 0.
2. N(t) is integer valued.
3. If s < ¢, then N(s) < N(¢).

Intuitively, N (t) represents the number of events that have occurred up to time
t.

A counting process is said to possess independent increments if a; < ag <
.-+ < ay, implies that the random variables N (a2)—N(a1), N(asz)—N(a2),...,N(ag)—
N (ag—1). Intuitively, the number of events occurring in one interval should be
independent of the number of events occurring in another interval, provided the
intervals are disjoint.

A counting process is said to possess stationary increments if N(s + t) —
N (s) depends only on ¢. Intuitively, the number of events that occur in an inter-
val depends only on its length.

2 Poisson processes

A counting process is said to be Poisson with rate A > 0 if it has the following
properties:

1. N(0) =0.
2. The process has stationary and independent intervals.

3. P(N(h) = 1) = M+ o(h).



Poisson processes may be defined in a different way. A process is said to be
Poisson with rate A\ > 0, if

1. N(0)=0.
2. The process has independent increments.
3. Forall s,t > 0,

P(N(s+1t)—N(s)=n) = e_)‘t();zﬁ.

Claim: The two definitions of a Poisson process are equivalent.

Proof: That the second definition implies the first follows immediately from the
taylor series of e~*. To show that the first definition implies the second, we
argue as follows.

Lets use the shorthand P, (t) = P(N(t) = n). First, let’s derive the ex-
pression for Py(t). The assumptions of independence and stationary increments
imply

Pyt + ) = Po(t) Po(h) = Po(t)(1 — M + o(h)),

SO
Dot +h) — B(t) o(h)
=-A\Ph+—=
h o+ B
and taking the limit as h — 0, we get!
P} = —\P,.

The solution of this ode is Py(t) = Ce™, and since Py(0) = 1, we get Py(t) =
Ce M,

Now for n > 1, we have
P,(t+h) = P,(t)Py(h) + Py—1(t)P1(h) 4+ o(h),
which gives

Pn(t + h) — Pn(t)
h
'Tt could be argued that we have only shown that the derivative from the right satisfies the ode

above. However, one can repeat the same argument beginning with Po(t) = Po(t — h)Po(h), to
get the same fact for the left derivative. We omit the details.

= —)\Pn(t) + )\Pn—l(t)7




SO
P, = —\P, + AP,_,.

The trick is to write this as

d
E(eMPn) = MAP,_ 1.

With this formula in place, lets prove that P, (t) = e~*(A\t)" /n! by induction.
We know this is true for n = 0. Assuming its true for n, we have

d e (A

E( )\tPn+1(t)) — e)\t)\e At =
o +1pn+1

AT
At
Poi(t)=——+C
or
_)\ /\n-l—ltn-i-l Iy

Pn-l—l(t): (n+1)| + Ce ’

and since P, (0) = 0, we get C' = 0. This completes the proof. O

Poisson processes can also be characterized by their interarrival times. Let
T}, be the time between the & — 1st and kth arrival. What is the distribution of
the 1}.s?

Clearly,
P(Ty >t) = P(N(t) =0) = e,

so T is exponentially distributed with parameter A\. Moving on,
P(Ty > t|Ty = s) = P(N(s + 1) — N(s) = O[T} = s),

and now by independent increments, N (s + t) — N(s) is independent of the
event T7 = s, so
P(Ty > t|Ty = 5) = e,

so T5 is also exponentially distributed with parameter A and independent of 7.
Proceeding this way, we get that all of the 7 are iid exponentials with parameter

A



3 Another definition of the Poisson process

Let S; be the arrival times of a Poisson process, i.e.
St =T

Sy = T1+15
S; = Ty +Ty+ T3

Claim: Conditioned on N(t) = n, the distribution of St,..., S, is the same as
the distribution of order statistics of U|0, t| random variables.

Remark: This gives another view of the poisson process. We can fix time
t, draw n from a poisson distribution with parameter At¢, and then generate
Si,...,Sy as order statistics of uniform random variables on [0, ¢].

Proof: Suppose t; < ty < --- < t, are points in (0,t¢). Pick h to be small
enough so that ¢; + h < ¢;41. Consider the the probability,

P(Sy € [t1,t1 + 1], S2 € [ta,ta + D], ..., Sy € [tn,ty + D], N(t) = n)

This is the same as the probability of exactly one arrival in each interval [¢;,¢; +
h] and no arrivals elsewhere in [0, t]. So,

Ahe—Mn —A(t—nh)
P(Sy € [trots + B, Ss € [tata+ B, 2 Sn € [tmntn + B | N(t) =) = 2he )"

e~ A"t /n)
n!
t_”h

and this implies that the density of Si,..., S, conditioned on N(¢) = n is
n!/t"? 0

?If you would like to make the last step more precise, one can argue as foolows. Observe that
we have two probability measures on R™: P1(A) = P((S1,...,5,) € A),and P,(A) = [, f.
where f(x1,...,2n) = n!/t" whenever 0 < z1 < z2... < zn < t, and 0 elsewhere. We want
to show that these two measures are the same everywhere. For simplicity, consider the case when
n = 2. Then, we have shown that these two measures are the same on rectangles of the form
[a,b] X [c,d] where b < c. They must also be the same on rectangles of the form [a, b] x [c, d]
when a > d - the probability is O in both cases. Its not hard to see these two facts imply the two
measures must be the same on all rectangles, and consequently on all Borel sets.
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