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Poisson Processes 

1 Counting processes 

A stochastic process N(t), t � 0 is said to be a counting process if N(t) satisfies 
the following properties: 

1. N(t) � 0. 

2. N(t) is integer valued. 

3. If s < t, then N(s) � N(t). 

Intuitively, N(t) represents the number of events that have occurred up to time 
t. 

A counting process is said to possess independent increments if a1 � a2 � 
· · · � ak implies that the random variables N(a2)−N(a1), N(a3)−N(a2), . . . , N(ak)− 
N(ak−1). Intuitively, the number of events occurring in one interval should be 
independent of the number of events occurring in another interval, provided the 
intervals are disjoint. 

A counting process is said to possess stationary increments if N(s + t) − 
N(s) depends only on t. Intuitively, the number of events that occur in an inter­
val depends only on its length. 

2 Poisson processes 

A counting process is said to be Poisson with rate � > 0 if it has the following 
properties: 

1. N(0) = 0. 

2. The process has stationary and independent intervals. 

3. P (N(h) = 1) = �h + o(h). 
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4. P (N(h) � 2) = o(h). 

Poisson processes may be defined in a different way. A process is said to be 
Poisson with rate � > 0, if 

1. N(0) = 0. 

2. The process has independent increments. 

3. For all s, t � 0, 

P (N(s + t) − N(s) = n) = e −�t (�t)n 

. 
n! 

Claim: The two definitions of a Poisson process are equivalent. 

Proof: That the second definition implies the first follows immediately from the 
taylor series of e−�t . To show that the first definition implies the second, we 
argue as follows. 

Lets use the shorthand Pn(t) = P (N(t) = n). First, let’s derive the ex­
pression for P0(t). The assumptions of independence and stationary increments 
imply 

P0(t + h) = P0(t)P0(h) = P0(t)(1 − �h + o(h)), 

so 
P0(t + h) − P0(t) o(h) 

= −�P0 + ,
h h 

and taking the limit as h � 0, we get1 

P0 
� = −�P0. 

The solution of this ode is P0(t) = Ce−�t, and since P0(0) = 1, we get P0(t) = 
Ce−�t . 

Now for n � 1, we have 

Pn(t + h) = Pn(t)P0(h) + Pn−1(t)P1(h) + o(h), 

which gives 
Pn(t + h) − Pn(t) 

= −�Pn(t) + �Pn−1(t),
h 

1It could be argued that we have only shown that the derivative from the right satisfies the ode 
above. However, one can repeat the same argument beginning with P0(t) = P0(t − h)P0(h), to 
get the same fact for the left derivative. We omit the details. 
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�. 

so

P � = −�Pn + �Pn−1.n 

The trick is to write this as 

d 
(e �tPn) = e �t�Pn−1. 

dt

With this formula in place, lets prove that Pn(t) = e−�t(�t)n/n! by induction. 
We know this is true for n = 0. Assuming its true for n, we have 

d 
(e �tPn+1(t)) = e �t�e−�t (�t)n 

,
dt n! 

or 
�n+1tn+1 

e �tPn+1(t) = + C, 
(n + 1)! 

or 
�n+1tn+1 

Pn+1(t) = e −�t + Ce−�t ,
(n + 1)! 

and since Pn(0) = 0, we get C = 0. This completes the proof. 

Poisson processes can also be characterized by their interarrival times. Let 
Tk be the time between the k − 1st and kth arrival. What is the distribution of 
the Tks? 

Clearly, 
P (T1 > t) = P (N(t) = 0) = e −�t , 

so T1 is exponentially distributed with parameter �. Moving on, 

P (T2 > t|T1 = s) = P (N(s + t) − N(s) = 0|T1 = s), 

and now by independent increments, N(s + t) − N(s) is independent of the 
event T1 = s, so 

P (T2 > t|T1 = s) = e −�t , 

so T2 is also exponentially distributed with parameter � and independent of T1. 
Proceeding this way, we get that all of the Ti are iid exponentials with parameter 
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3 Another definition of the Poisson process 

Let Si be the arrival times of a Poisson process, i.e. 

S1 = T1 

S2 = T1 + T2 

S3 = T1 + T2 + T3 
. . . . . . . . . 

Claim: Conditioned on N(t) = n, the distribution of S1, . . . , Sn is the same as 
the distribution of order statistics of U [0, t] random variables. 

Remark: This gives another view of the poisson process. We can fix time 
t, draw n from a poisson distribution with parameter �t, and then generate 
S1, . . . , Sn as order statistics of uniform random variables on [0, t]. 

Proof: Suppose t1 < t2 < · · · < tn are points in (0, t). Pick h to be small 
enough so that ti + h < ti+1. Consider the the probability, 

P (S1 → [t1, t1 + h], S2 → [t2, t2 + h], . . . , Sn → [tn, tn + h], N(t) = n) 

This is the same as the probability of exactly one arrival in each interval [ti, ti + 
h] and no arrivals elsewhere in [0, t]. So, 

P (S1 → [t1, t1 + h], S2 → [t2, t2 + h], . . . , Sn → [tn, tn + h] | N(t) = n) = 

= 

and this implies that the density of S1, . . . , Sn conditioned on N(t) = n is 
n!/tn2 

2If you would like to make the last step more precise, one can argue as foolows. Observe that 
we have two probability measures on Rn: P1(A) = P ((S1, . . . , Sn) � A), and P2(A) = 

�
A f , 

where f(x1, . . . , xn) = n!/tn whenever 0 < x1 < x2 . . . < xn < t, and 0 elsewhere. We want 
to show that these two measures are the same everywhere. For simplicity, consider the case when 
n = 2. Then, we have shown that these two measures are the same on rectangles of the form 
[a, b] × [c, d] where b � c. They must also be the same on rectangles of the form [a, b] × [c, d] 
when a � d - the probability is 0 in both cases. Its not hard to see these two facts imply the two 
measures must be the same on all rectangles, and consequently on all Borel sets. 
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