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Markov Chains

e Problem 19 from Poisson process exercises in [BT]

e Fact: If there is a single recurrent class, the frequency with which the edge
© — 7 is traversed is m;p;;. This fact allows us to solve some problems
easily.

Consider a birth-death Markov chain. State space 1,...,m. If you are at
state ¢, you go to ¢ + 1 with probability d; and ¢ — 1 with probability b;.
The numbers b;, d; are given. You stay at ¢ with probability 1 — b; — d;.

See problem 21 in Markov chain chapter of [BT] for a picture.

The edge ¢ — i+ 1 is traversed in the same proportion as the edge 1 +1 —
1, SO
mibi = mMip1dia,

or
b;
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The above recursion allows one to write all the stationary probabilities in
terms of 71 as
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Together with the equation
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this completely determines ;. For example, suppose b; = 1/3,d; = 2/3
for all 7. Then,
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and lets assume m is very large, so that
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and so on.

Random walk on a graph. A particle performs a random walk on the
vertex set of a connected undirected graph G, which for simplicity we
assume to have neither loops nor multiple edges. At each stage it moves
to a neighbor of its current position, each such neighbor being chosen
with equal probability. If G has n < oo edges, show that the stationary
distribution is given by m, = d,/(2n), where d, is the degree of each
vertex v.

One way to do this problem is to simply check that the proposed solution
satisfies the defining equations: 7P = m, and ), m, = 1 (we can see
immediately that we have nonnegativity). We have:

Yo=Y

since the sum of the degrees is twice the number of edges (each edge
increases the sum of the degrees by exactly 2). Similarly, we can show
that 7P = 7. Let us define d,,, to be 1 if vertices u and v are adjacent,



and 0 otherwise. Then, we have:

1 1
EU:WUPW = %Z}:du <d—v5vu>

But ), 0,y is the number of edges incident to node w, that is, ), 0y =
d,,. Therefore we have:

1 d
> woPou = o—dy = 5% =T
~ 21 2n

This is what we wanted to show.



[Note: HW11-07; from [GS]]

Exercise 133. A particle performs a random walk on a bow tie ABC DFE drawn
beneath, where C'is the knot. From any vertex, its next step is equally likely to
be to any neighbouring vertex. Initially it is at A. Find the expected value of:

(a) The time of first return to A.
(b) The number of visits to D before returning to A.
(¢) The number of visits to C' before returning to A.

(d) The time of first return to A, given that there were no visits to E before the
return to A.

(e) The number of visits to D before returning to A, given that there were no
visits to F before the return to A.

Figure 1: A simple example of the set operation we describe.

Solution: First, we can compute that the steady state distributionis 74 = 75 =
mp = g = 1/6, and 7o = 1/3. We can do this either by solving a system of
linear equations (as usual) or just use our result from the first problem above.

(a) By the result from class, and on the handout, we have: t4 = 1/m4 = 6.
Alternatively, we can solve the following system of equations (observe
than ¢4 appears in only one equation):

1 1
ta = Slp+1)+5(tc+1)
11
tg = —+=(tc+1
B 2+2(C+)
to = *4tepr e st
c = A 4 B 4 D 4 E
1 1
tp = 5(t0+1)+§(tE+1)
1 1
tE = 5(t0+1)+§(tD+1).
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(b) By the result from the handout on Markov Chains, we know that

[E[# transitions to D in a cycle that starts and ends at A|
D = . -
b [E[# transitions in a cycle that starts and ends at A]

)

from which we find that the quantity we wish to compute is 67p = 1.
(¢) Using the same method as in part (b), we find the answer to be 6m¢ = 2.

(d) We let P;(-) = P(:|X¢ = ), and let T} be the time of the first passage to
state j, and let v; = P;(T4 < Tg). Then, as we obtained the equations
above, that is, by conditioning on the first step, we have

Lol

va = —vp+ -1

A 2B 2C’
1,1

vg = =+ -1,

B 2 2C

L1

ve = T yvB Ty
1

1% = —UVC.

D 2C’

Solving these, we find: v4 = 5/8,vp = 3/4,vc = 1/2,vp = 1/4. Now
we can compute the conditional transition probabilities, which we call 7;;.
We have:

Tap = Pa(Xy1=B|Ta <Tg)
IP)A(Xl = B)PB(TA < TE)

]P)A(TA<TE)
_ v _3
w4 5

Similarly, we find: Tac = 2/5,784 = 2/3, 780 = 1/3,7c4 = 1/2,7cB =
3/8,7cp = 1/8,7pc = 1. Now we have essentially reduced to a prob-
lem like part (a). We can compute the conditional expectation by solving

a system of linear equations using the new transition probabilities:

ta = 1+3£ +2£

A = siB T ¢l

N 2 1-

t = 14+ (1 —t

B +3()+3O

N 1 3~ 1-
t = 1+ —=(1 —t —t
c +2()+83+8D
fD = 1+7§C.

Solving these equations, yields £ 4 = 14/5.
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(e) We can use the conditional transition probabilities above, to reduce to a
problem essentially like that in part (b). Let [V be the number of visits to
D. Then, denoting by n; the expected value of N given that we start at i,
and that T4 < T'r, we have the equations:

nA

B

nc
D

3,2
5773 5?73

0+1
3'c

3 1
0+ = —(1
+8773+8( +1p)

ne.

Solving, we obtain: n4 = 1/10.
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