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''•	 This is a closed book exam, but two 81
2
× 11'' sheets of notes (4 sides total) are 

allowed. 

•	 Calculators are not allowed. 

•	 There are 3 problems of approximately equal value on the exam. 

•	 The problems are not necessarily in order of difficulty. We recommend that you 
read through all the problems first, then do the problems in whatever order 
suits you best. 

•	 Record all your solutions in the answer booklet provided. NOTE: Only the 
answer booklet is to be handed in—no additional pages will be con­
sidered in the grading. You may want to first work things through on the 
scratch paper provided and then neatly transfer to the answer sheet the work 
you would like us to look at. Let us know if you need additional scratch paper. 

•	 A correct answer does not guarantee full credit, and a wrong answer does not 
guarantee loss of credit. You should clearly but concisely indicate your reasoning 
and show all relevant work. Your grade on each problem will be based on 
our best assessment of your level of understanding as reflected by what you have 
written in the answer booklet. 

•	 Please be neat—we can’t grade what we can’t decipher! 
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Problem 1
 

Consider random variables x1, x2, y = (y1, . . . , yN ), z = (z1, . . . , zN ) distributed ac­
cording to 

NN 	  
px1,x2,y,z(x1, x2, y, z) = px1 (x1) px2 (x2) py |x1 (yn|x1) pz|y ,x2 (zn|yn, x2) , 

n=1

where x1, y1, . . . , yN , z1, . . . , zN take on values in {1, 2, . . . , K}, and x2 instead takes on 
a value in {1, 2, . . . , N}. A minimal directed I-map for the distribution is as follows: 

x1 

x2 

yN y2 y1 

zN z2 z1 

… 

… 

Assume throughout this problem that the complexity of table lookups for px1 , px2 , 
py |x1 , and pz|y ,x2 are O(1). 

(a) Draw the moral graph over random variables x1, x2, y1, . . . , yN conditioned on z. 

(b) Provide a good elimination ordering. For your elimination ordering: 

i) Draw the reconstituted graph over random variables x1, x2, y1, . . . , yN con­
ditioned on z. 

ii) Determine α and β such that complexity of computing px1|z using the 
associated Elimination Algorithm is O(NαKβ ). 

For parts (c) and (d), suppose that we also have the following context-dependent 
conditional independencies: yi ⊥⊥ zi|x2  = c for all c = i. 

(c) For fixed z, x1, and c, show that 

pz|x1,x2 (z|x1, c) = η(x1, c, zc) λ(c, z) 

for some function η(x1, c, zc) that can be computed in O(K) operations, and 
some function λ(c, z) that can be computed in O(N) operations. Express 
η(x1, c, zc) in terms of py |x1 and pz|y ,x2 , and λ(c, z) in terms of pz|x2 . 

(d) Provide an expression for	 px1,z(x1, z) in terms of px1 , px2 , η, and λ. Use your 
expression to explain how px1|z(·|z) can be computed in O(N2+NK2) operations 
for a fixed z. 
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Problem 2
 
Consider a stochastic process that transitions among a finite set of states s1, . . . , sk 

over time steps i = 1, . . . , N . The random variables x1, . . . , xN representing the state 
of the system at each time step are generated as follows: 

•	 Sample the initial state s from an initial distribution p1, and set i := 1. 
•	 Repeat the following: 

–	 Sample a duration d from a duration distribution pD over the integers 
{1, . . . ,M}, where M is the maximum duration. 

–	 Remain in the current state s for the next d time steps, i.e., set 

xi := xi+1 := . . . := xi+d−1 := s. 

–	 Sample a successor state s ' from a transition distribution pT(·|s) over the 
other states s '  s (so there are no self-transitions). 

–	 Assign i := i + d and s := s ' . 

This process continues indefinitely, but we only observe the first N time steps. You 
need not worry about the end of the sequence to do any of the problems. 

As an example calculation with this model, the probability of the sample state 
sequence s1, s1, s1, s2, s3, s3 is  


p1(s1) pD(3) pT(s2|s1) pD(1) pT(s3|s2) pD(d). 
2≤d≤M 

Finally, we do not directly observe the xi’s, but instead observe emissions yi at 
each time step sampled from a distribution pyi|xi (yi|xi). 

(a) For this part only, suppose M = 2, pD is uniform over {1, 2}, and each xi takes 
on a value in alphabet {a, b}. Draw a minimal directed I-map for the first five 
time steps using the variables (x1, . . . , x5, y1, . . . , y5). Explain why none of the 
edges can be removed. 

(b) This process can be converted to an HMM using an augmented state representa­
tion. In particular, the states of this HMM will correspond to pairs (x, t), where 
x is a state in the original system, and t represents the time elapsed in that 
state. For instance, the state sequence s1, s1, s1, s2, s3, s3 would be represented 
as (s1, 1), (s1, 2), (s1, 3), (s2, 1), (s3, 1), (s3, 2). The transition and emission dis­
tributions for the HMM take the forms 

p̃xi+1,ti+1|xi,ti (xi+1, ti+1|xi, ti) = 

⎧ ⎪⎨ ⎪⎩
 

ν(xi, xi+1, ti) if ti+1 = 1 and xi+1  xi 

ξ(xi, ti) if ti+1 = ti + 1 and xi+1 = xi 

0	 otherwise
 

and p̃yi|xi,ti (yi|xi, ti), respectively. Express ν(xi, xi+1, ti), ξ(xi, ti), and p̃yi|xi,ti (yi|xi, ti) 
in terms of the parameters p1, pD, pT, pyi|xi , k, N , and M of the original model. 
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(c) We wish to compute the marginal probability for the final state xN given the 
observations y1, . . . , yN . If we naively apply the forward-backward algorithm to 
the construction in part (b), the computational complexity is O(Nk2M2). Show 
that by exploiting additional structure in the model, it is possible to reduce the 
complexity to O(N(k2 + kM)). In particular, give the corresponding rules for 
computing the forward messages 

α(xi, ti) = py1,...,yi,xi,ti (y1, . . . , yi, xi, ti). 

Equivalently, if you wish, you may give rules for computing the belief propaga­
tion messages mi−1→i(xi, ti) instead of α. 

Be sure to justify your answer. You need not worry about the beginning or end 
of the sequence, i.e., you may restrict attention to 2 ≤ i ≤ N − 1. 

Note: If you cannot fully solve this part of the problem, you can receive sub­
stantial partial credit by constructing an algorithm with complexity O(Nk2M). 

Hint : Substitute your solution from part (b) into the standard HMM messages 
and simplify as much as possible. 
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Problem 3 

The graph G is a perfect undirected map for some strictly positive distribution px over 
a set of random variables x = (x1, . . . , xN ), each of which takes values in a discrete set 
X . Choose some variable xi and let xA denote the rest of the variables in the model, 
i.e., {xi, xA} = {x1, . . . , xN }. 

(a) Construct the graph G ' from G by connecting all the neighbors of xi, and then 
removing xi and all its edges. Show that G ' is a perfect map for the marginal 
distribution pxA . 

(b) Construct the graph G '' from G by removing the node xi and all its edges. Let 
some value c ∈ X be given. Show that G '' is not necessarily a perfect map for 
the conditional distribution pxA|xi (·|c) by giving a counterexample. 

(c) Would the graph G '' from part (b) be a perfect map for pxA|xi (·|c) if the variables 
x were jointly Gaussian rather than discrete? If so, provide a proof; if not, give 
a counterexample. 
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