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Quiz 2 
Monday, December 12, 2011 

7:00pm–10:00pm 

''•	 This is a closed book exam, but two 81
2
× 11'' sheets of notes (4 sides total) are 

allowed. 

•	 Calculators are not allowed. 

•	 There are 3 problems of approximately equal value on the exam. 

•	 The problems are not necessarily in order of difficulty. We recommend that you 
read through all the problems first, then do the problems in whatever order 
suits you best. 

•	 Record all your solutions in the answer booklet provided. NOTE: Only the 
answer booklet is to be handed in—no additional pages will be con­
sidered in the grading. You may want to first work things through on the 
scratch paper provided and then neatly transfer to the answer sheet the work 
you would like us to look at. Let us know if you need additional scratch paper. 

•	 A correct answer does not guarantee full credit, and a wrong answer does not 
guarantee loss of credit. You should clearly but concisely indicate your reasoning 
and show all relevant work. Your grade on each problem will be based on 
our best assessment of your level of understanding as reflected by what you have 
written in the answer booklet. 

•	 Please be neat—we can’t grade what we can’t decipher! 
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Problem 1
 
All parts to this problem can be done independently. 
We wish to use a variational approach to approximate p(x|y), where x = (x(1), . . . , x(L)) 

is a collection of L vectors. We will use an approximating distribution q that factors 
as 

LL 
(c))q(x) = qc(x	 (1) 

c=1 

with each qc summing to 1. Note that each variable in x is in one and only one qc. 

(a)	 (2 Points) Let q ∗ be the q that solves our variational optimization problem (i.e.
 
q ∗ maximizes Eq [log p(x, y)] + H(q) subject to the constraint that q factorizes
 
as above). Justify why q ∗ can in principle be a better approximation than the
 
mean field approximation where the approximating distribution fully factors
 a a (c) (c)
r(x) = r (x ).c	 i i i 

(b)	 (3 Points) To search for q ∗ , we will hold all of the q1, . . . , qL constant ex­
cept for a specific qc and maximize with respect to qc. Show that maximizing
 
Eq [log p(x, y)] + H(q) with respect to qc keeping the rest of the factors constant
 

(c)is equivalent to minimizing D(qc I p̃(x , y)) where 

(c)p̃(x , y) ∝ exp (E−c [log p(x, y)])	 (2) aLand E−c [·] denotes expectation is over the distribution i=1 qi, so that p̃ is a 
i =c 

(c)distribution over x . 

You may use the fact that maximizing Eq [log p(x, y)] + H(q) is equivalent to 
minimizing D(q I p(x|y)) the KL divergence between q and p(x|y). 

From this, we conclude that the fixed point equations are given by 

qc(x
(c)) ∝ exp (E−c [log p(x, y)]) .	 (3) 
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(c)
Consider the following variation on an HMM where xt is a discrete random 

variable with K possible values and there are L chains: 

x
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0 x

(1)
1 x

(1)
2 x

(1)
T

x
(2)
0 x

(2)
1 x

(2)
2 x

(2)
T

x
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(L)
1 x

(L)
2 x

(L)
T

y0 y1 y2 yT

The initial distributions p (£) are given, the transition distributions p (£) (£) are 
x	 x |x0	 t t−1 

homogeneous and given, and the emission probabilities p are homogeneous (1) (L)
yt|x	 ,...,xt t 

and given. In this model, the yt are observed for t = 0, . . . , T . In terms of the 
(c) (c)

notation above, x(c) = (x0 , . . . , xT ) is the vector corresponding to the fth chain and 
y denotes (y0, . . . , yT ). 

(c)	 (3 Points) For this model, the right hand side of the fixed point equations (3) 
simplify to 

T TL L 
(c) (c) (c) (c) (c)

qc(x
(c)) ∝ p(x0 ) p(xt |xt−1) ψt (xt ). (4) 

t=1 t=0 

(c)
Determine ψt , expressing your answer in terms of p (L) and qcI ’s where (1)

yt|x	 ,...,x

f'  	
t t 

= f. 

(d)	 (2 Points) Given a fixed point q ∗ of (4), draw an undirected graphical model 
that represents the distribution q ∗(x). 
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Problem 2
 

All parts to this problem can be done independently. 
Suppose we are interested in a distribution of the form 

1 
px(x) = R(x)	 (5)

Z 

over random variables x = (x1, . . . , xN ) which take values in {0, 1}. We are given R, a 
strictly positive function we can efficiently evaluate (such as a product of potentials), r 
and we are interested in estimating the partition function Z = x R(x). 

(a)	 (1 point) One approach is based on importance sampling. For a given (strictly 
positive) proposal distribution q, give a nonnegative function f(x) which can 
be efficiently evaluated, such that Eq[f(x)] = Z. 

(b)	 (3 points) Suppose we generate k samples x1 , . . . , xk from q. Consider the two 
estimators 

kk 
α(x 1 , . . . , x k) = 

1 
f(x i)	 (6)

k 
i=1  k1 

k

i)β(x 1 , . . . , x k) = exp log f(x ,	 (7)
k 

i=1 

where f is the function from part (a). Say whether each of E[α] and E[β] is 
less than, equal to, or greater than Z. Justify your answer. Hint : use Jensen’s 
inequality to determine the relationship between α and β for a given (fixed) set 
of samples x1 , . . . , xk . 

Now we consider a more accurate procedure called annealed importance sampling. 
(0) (T )

We are given functions R(t) which define a series of T + 1 distributions px , . . . , px : 

1 
px 
(t)(x) = 

Z(t) 
R(t)(x)	 (8) 

(T )	 (0)
such that px = px and Z(T ) = Z. The initial distribution px is one for which we can 
easily generate samples and calculate the partition function. (For instance, a uniform 
distribution.) Consider the following procedure: 

(0) (0) := Z(0)Sample x(0) from the distribution px , and set w . 

For t = 0, . . . , T − 1, 

(t) R(t+1)(x(t))(t+1) := wSet w
R(t)(x(t)) 

Let x(t+1) be the result of applying one step of Gibbs sampling to x(t) with 
(t+1)

respect to the distribution px . 
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(Recall that, in Gibbs sampling, we randomly choose a variable xi and set xi to a 
(t+1)

sample from the conditional distribution pxi|x−i 
(·|x−i), where x−i denotes the variables 

other than xi.) Note that, while this is a sequential sampling procedure like particle 
filtering, there is only one sample x(t) and one weight w(t) in each step. 

Let qx ,w denote the joint distribution over the state and weight at a given time (t) (t) 

step, i.e. the randomness is with respect to the choices made in the above algorithm. 
We will prove inductively that in each iteration, Eq [w(t)f(x(t))] = Z(t)E (t) [f(x)]

(t) (t) px ,w 

for all functions f . This yields the partition function when we plug in t = T and 
f(x) = 1. The base case is clear from the definition. Parts (c) and (d) give the 
inductive step. Note that the two parts can be completed independently of each 
other. 

(c) (3 points) Suppose that 

[w(t)f(x(t))] = Z(t)E (t) [f(x)] (9)Eq (t) (t) px ,w x 

for all functions f . Show that 

(t+1)Eq [w g(x(t))] = Z(t+1)E [g(x)] (10)(t+1) 
x(t),w(t+1) px 

for all functions g. Hint: In evaluating the left hand side of (10), use (9) with 
a suitable choice of f . 

(d) (3 points) Suppose that 

(t+1)f(xEq [w (t))] = Z(t+1)E (t+1) [f(x)] (11)
(t) (t+1)x ,w px 

for all functions f . Show that 

(t+1)Eq [w g(x(t+1))] = Z(t+1)E [g(x)] (12)(t+1)
(t+1) (t+1)x ,w px 

for all functions g. 

Hint: Start by arguing that 

Eq (t+1) (t+1) 
[w(t+1)g(x(t+1))] =Eq (t) (t+1) 

[w(t+1)Eq (t+1)|x(t) 
[g(x(t+1))|x(t)]]. (13) 

x ,w x ,w x

To evaluate the right hand side of (13), use (11) with a suitable choice of f . 
(t+1)

Then use the fact that px is a fixed point of the Gibbs sampling transition 
operator. 
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Problem 3 

All parts to this problem can be done independently. 
Suppose we have a zero-mean Gaussian random vector x = (x1, x2, x3) ∈ R3 with 
unknown information matrix J, i.e., ⎛	 ⎞ ⎛⎛ ⎞ ⎡ ⎤⎞ 

x1 0 J11 J12 J13 ⎝	 ⎠ ∼ N−1 ⎝⎝ ⎠ ⎣ ⎦⎠x = x2 0 , J21 J22 J23 .	 (14) 
x3 0 J31 J32 J33 

Our goal is to determine the graph structure over random variables x1, x2, x3 given ob­rM(1)	 (2) 1 (m)servations x , x , . . . , x(M), sampled i.i.d. from N−1(0, J). Letting µ = m=1 x , 
1 rM

M 

the problem with taking the sample covariance matrix (x(m) − µ)(x(m) − µ)T 
M	 m=1

and inverting it to estimate the information matrix is that inverting a sample covari­
ance matrix will almost surely give a matrix that has all non-zero entries, correspond­
ing to a fully connected graph, which isn’t very interesting. 

(a)	 (2 points) We know that x1|(x2, x3) ∼ N−1(ĥ1, J11) for some ĥ1. 

Show that hh1 = f(J12)x2 + g(J13)x3 where f(J12) = 0 if and only if J12 = 0 and 
g(J13) = 0 if and only if J13 = 0. 

(b)	 (2 points) For our model, we have E[x1 | x2, x3] = αx2 + βx3. Provide expres­
sions for α and β in terms of f(J12), g(J13), and J11. You should find that α = 0 
if and only if f(J12) = 0, and β = 0 if and only if g(J13) = 0. 

(c)	 (1 point) Using parts (a) and (b), justify why α = 0 if and only if there is no 
edge between x1 and x2, and similarly why β = 0 if and only if there is no edge 
between x1 and x3. 

(d)	 (4 points) For this part only, we’ll assume that there is no edge between x1 and 
x3, so by the results of parts (b) and (c), we have E[x1 | x2] = E[x1 | x2, x3] = αx2. 
We want to see whether there is an edge between x1 and x2. We write E[x1 | x2] 
in variational form: 

E[x1 | x2] = argmin E[(x1 − h(x2))
2]. (15) 

h s.t. h(x2)=ax2 for some a∈R 

We can’t compute the expectation on the right-hand side since we don’t know J, 
so we replace the expectation with an empirical mean and instead solve: 

M	 rM (m) (m)k1 (m) (m)
)2 m=1 x1 x2αh = argmin (x1 − ax2 = rM 

, (16)
M	 (m)

)2a∈R	 (x2m=1	 m=1

where the second equality follows from setting the derivative of the objective 
function to 0. The resulting αh is our estimate of α in the previous parts; thus, 
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we use αh to infer whether there is an edge between x1 and x2. Unfortunately, 
the right-hand side is nonzero with probability 1, so we always have an edge 
between x1 and x2. 

Consider instead if we replaced optimization problem (16) with the following 
new optimization problem: 

Mk 
α ∗ 1	

)2
(m) (m)

= argmin (x − ax + λ|a| , (17)1 2 
a∈R M 

m=1 

where λ > 0 is a fixed constant. The new term added, λ|a|, encourages sparsity. 
Provide an expression for α∗ under the assumption that we are only optimizing 
over a ∈ [0, ∞), and determine constant L in terms of λ and M such that rM (m) (m)
α∗ = 0 whenever x x ≤ L. m=1 1 2 

Remark : If we optimize over a ∈ R rather than just a ∈ [0, ∞), then α∗ = 0 rM (m) (m)
whenever −L ≤ m=1 x1 x2 ≤ L, but you don’t need to show this. 

(e)	 (1 point) Optimization problem (17) can be extended to work when x1 has more 
than just one neighbor. In fact, if x = (x1, . . . , xN ) is instead an N -dimensional 
Gaussian, then we can solve: ⎧ ⎫ ⎨ M N 2 N ⎬k k k1 (m) (m)

α ∗ = argmin	 x − aj x + λ |aj | , (18)1 j⎩M	 ⎭a=(a2,a3,...,aN )∈RN −1 
m=1 j=2	 j=2 

for some fixed, pre-specified λ > 0. Sparsity in α∗ tells us which neighbors x1 

has, i.e., α∗ 
j = 0 implies that x1 and xj are not neighbors. 

Suppose M « N . In this setting, the sample covariance matrix lacks an inverse 
as it is not full rank. However, we can still solve optimization problem (18). 
Assume we have an algorithm that solves (18) in time O(NM2). Describe an 
O(N2M2) procedure that estimates the graph structure across all N variables 
— not just which nodes are neighbors of x1. Feel free to resolve inconsistencies 
regarding whether two nodes are neighbors arbitrarily. 

Your answer should be brief. 
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