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''•	 This is a closed book exam, but two 81
2
× 11'' sheets of notes (4 sides total) are 

allowed. 

•	 Calculators are not allowed. 

•	 There are 3 problems. 

•	 The problems are not necessarily in order of difficulty. We recommend that you 
read through all the problems first, then do the problems in whatever order 
suits you best. 

•	 Record all your solutions in the answer booklet provided. NOTE: Only the 
answer booklet is to be handed in—no additional pages will be con­
sidered in the grading. You may want to first work things through on the 
scratch paper provided and then neatly transfer to the answer sheet the work 
you would like us to look at. Let us know if you need additional scratch paper. 

•	 A correct answer does not guarantee full credit, and a wrong answer does not 
guarantee loss of credit. You should clearly but concisely indicate your reasoning 
and show all relevant work. Your grade on each problem will be based on 
our best assessment of your level of understanding as reflected by what you have 
written in the answer booklet. 

•	 Please be neat—we can’t grade what we can’t decipher! 
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Question 1 

Consider three random variables X1, X2 and X3. Let each of them be binary 
valued, i.e. Xi ∈ {0, 1} for 1 ≤ i ≤ 3. Let their joint distribution be given by 

P(x1, x2, x3) ∝ φ1(x1)φ2(x2)φ3(x3)ψ12(x1, x2)ψ13(x1, x3)ψ23(x2, x3), (1) 

for any (x1, x2, x3) ∈ {0, 1}3 . Let φi, 1 ≤ i ≤ 3, and ψij , 1 ≤ i < j ≤ 3 be strictly 
positive valued potentials. Therefore, each of {0, 1}3 has strictly positive probability. 

(a) Draw the corresponding graphical model. 
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(b) Write down sum-product equations.
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(c) Will sum-product always converge for this graphical model ? If no, provide a 
counter-example. If yes, provide a detailed proof. 
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Question 2 

We learnt about Kalman filtering (inference in Gaussian Hidden Markov Model) 
in class. The goal of this question is to understand how it can be used in a practical 
scenario through a stylized, but meaningful toy example. 

We wish to control (i.e. navigate) a vehicle in an one dimensional space. Let 
xt ∈ R be the position of vehicle at time t = 0, 1, 2, . . .. We observe noisy position, 
denoted by yt, which is given by 

yt = xt + zt, (2) 

where zt is distributed as per Gaussian distribution with mean 0 and variance 1; and 
independent of everything else, for all t ≥ 0. At each time t, we apply “control” 
ut ∈ R to the vehicle resulting in the change of its location as 

xt+1 = xt + ut. (3) 

We shall assume that the control ut, at time t, is decided based on observations 
t t−1 y0 = (y0, . . . , yt) and past control decisions u0 = (u0, . . . , ut−1); that is, entire 

t t−1history F t = (y0, u 0 ). 
The goal of the controller is to move the vehicle to as close to 0 as possible. 

However, moving (controlling) the vehicle requires controller to spend energy. And, 
ideally controller wants to achieve the goal of moving vehicle to 0 at minimal cost. 
Given this, a reasonable objective, over time 0 ≤ t ≤ T is given by 

T −1T 
min E[x 2 

T ] + u 2 
t , (4)

T −1 u0 t=0 

Naturally, solving this problem requires two key components: (i) estimating the 
state of the system at each time instance, and (ii) use it to decide the amount of 
control that we wish to exert at a given time. This is precisely what we shall resolve, 
in that order. 

5
 



Estimation. This part should make you realize the value of Kalman filtering. 

(a) Draw the graphical model of {x0, . . . , xT , y0, . . . , yT }.
 
Note: Since control is designed by you, u0, . . . are observed.
 

6
 



(b) Briefly state how you would produce maximum likelihood estimation of state
 
xt at time t, given all the history F t . We shall denote it by x̂t. 
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(c) Now, we would like to understand the “error” in our estimation.
 
Assume that the initial location x0 follows a Gaussian distribution with mean 
0 and variance V0. Let 

Δt = x̂t − xt, 

denote the estimation error in the maximum likelihood estimation given his­
tory up to time t. We shall derive the error distribution inductively. To that 
end, suppose you are told that Δt−1 has Gaussian distribution with mean 0 
and variance Vt−1, conditioned on F t−1 . Given this, obtain the distribution of 
Δt conditioned on F t (and of course, you know x̂t−1). In particular, show that 
the variance Vt, of Δt, satisfies 

V −1 = V −1 
t 0 + t (5) 

Note: It may seem surprising that the variance in error is independent of control 
sequence. 

8 



Control. In this part, you will be guided to derive the optimal control. 

(d) Consider scenario when	 T is very large. Using (c), argue that effectively one 
can implement control with 0 objective cost as T → ∞. 
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(e) The	 more interesting scenario is that of finite T . To that end, we need to 
carefully evaluate the objective each time and make decision consequently. A 
“dynamic programming” approach to this is given below: recursively, define 

WT = λx2 
T , 

and for 0 ≤ t < T ,  	  
Wt = min ut 

2 + λ E[Wt+1|F t]
ut

We shall inductively argue the following: for 0 < t < T , assume that 

Wt = dtx̂t 
2 + ct, 

where ct, dt are constants that may vary with t. Then, using this form and by 
solving optimization problem 

Wt−1 = min ut
2 
−1 + E[Wt+1|F t] , 

ut−1 

argue that Wt−1 has a form dt−1x̂t
2 
−1 + ct−1. Determine dt using these recursive 

equations. Notice that, the solution of the above optimization problem provides 
the solution for optimal control ut, as function of your state estimate, x̂t. 
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Question 3 

We are re-visiting the crowd-sourcing problem from earlier quiz with some addi­
tions. Let us quickly remind ourselves of the crowd-sourcing setting. We have M 
workers and N tasks. 

Tasks. Each task i, 1 ≤ i ≤ N , has a true answer zi ∈ {+1, −1} – e.g. task “Is 
Kampala the capital of Uganda?” has answer Yes or +1. We shall assume that 
each of the N task has true answer +1 with probability θ ∈ (0, 1), independent of 
everything else. That is, i.i.d. Bernoulli prior on tasks with parameter θ. 

Workers. Let Lij ∈ {−1, 0, +1} denote answer of worker j to task i – it will be ±1 
if worker j is assigned task i, and 0 otherwise. Let qj ∈ (0, 1) be the honesty of a 
worker: i.e. if worker j is assigned task i, then 

qj = P[Lij = zi] 

A worker with qj ≈ 1 is an expert, while with qj ≈ 0 an adversary1 . We assume that 
worker honesties qj , 1 ≤ j ≤ M , have i.i.d. Beta distribution with parameters α, β: 
for q ∈ (0, 1), the density is given by 

1
Pqj (q; α, β) = q α−1(1 − q)β−1 , (6)

B(α, β)

Γ(α)Γ(β)where α, β > 0 and B(α, β) = . Due to known property of Beta distribution, 
Γ(α+β) 

we have 
α

E[qj] = E[q] = . 
α + β 

1I.e., he/she intentionally gives wrong answers to serve his/her own personal interests. 
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Part 1. For this part, let us suppose that tasks arrive to the system one-by-one.
 
Upon arrival of task i, we make a decision which set of workers get assigned to it. 
Let si,j ∈ {0, 1} denote whether worker j is assigned task i (i.e. si,j = 1) or not. The 
task assignments are done as follow: (i) if worker j is assigned task i − 1, then s/he 
will not be assigned task i (giving rest to the worker); (ii) else, worker j is assigned 
to task i with probability ρj ∈ (0, 1) (activity parameter of worker j). Formally, 
P[si,j = 1|si−1,j = 1] = 0, while P[si,j = 1|si−1,j = 0] = ρj . 

(a) Draw an appropriate graphical model for this problem. 
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(b) Compute P[si,j = 1] for each i. Observe that it simplifies for very large i (i.e., 
i → ∞). 
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(c) Compute the average response of workers (again, assume i very large), i.e., u a 
1  Mlim E 
M j=1 Lij . i→∞ 
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(d) When does the sign of the number computed in (c) agree with the true answer 
of the task for very large i (i.e., i → ∞)? 
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Part 2. In this part, we assume that workers and tasks are pre-assigned. Let Nj ⊂ 
{1, . . . , N} denote tasks worker j is assigned to, and Mi ⊂ {1, . . . ,M} denote workers 
task i is assigned. Let L be the answers provided by workers to tasks that we observe. 
Given this, and model parameters α, β and θ, the goal is to estimate z = (z1, . . . , zN ) 
and q = (q1, . . . , qM ). 

(e) Utilize mean-field variational approximation to estimate marginals for each of 
z, and q, assuming a fully factorized distribution 

N MM M 
b(z, q) = µi(zi) νj (qj ). 

i=1 j=1 

The approximating distribution is pz,q|L(z, q|L). Provide the mean-field update 
equations for µi(zi), ∀i. 
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(f) Instead of mean-field, now state sum-product update equations for estimating 
marginal distributions for zi, pzi|L(zi|L), ∀i. For simplicity, assume θ = 1/2 from 
now on. 

Hint : By doing a clever manipulation, you might be able to express the full 
distribution pz|L(z|L) as a product of M factors. 
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