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""•	 This is a closed book exam, but two 81
2
× 11"" sheets of notes (4 sides total) are 

allowed. 

•	 Calculators are not allowed. 

•	 There are 3 problems. 

•	 The problems are not necessarily in order of difficulty. We recommend that you 
read through all the problems first, then do the problems in whatever order 
suits you best. 

•	 Record all your solutions on the exam paper. We have left enough space for 
each part. Extra blank sheets and stapler are available in case you need more 
space. You may want to first work things through on the scratch paper provided 
and then neatly transfer to the exam paper the work you would like us to look 
at. Let us know if you need additional scratch paper. 

•	 A correct answer does not guarantee full credit, and a wrong answer does not 
guarantee loss of credit. You should clearly but concisely indicate your reasoning 
and show all relevant work. Your grade on each problem will be based on 
our best assessment of your level of understanding as reflected by what you have 
written in the answer booklet. 

•	 Please be neat—we can’t grade what we can’t decipher! 
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Problem 1
 

Part 1 - Modelling: 
Consider the following events that may happen in a typical student dorm: 

A fire alarm (A) can be set off due to multiple reasons, upon which the students 
may have to evacuate (E) the building. One possibility for the alarm setting off is 
that some student accidentally burns their food (B) while cooking, which then causes 
a fire (F) in the building. Another possibility is that a student has some flammable 
chemicals (C) in their room, which can accidentally start a fire, causing the fire alarm 
to trigger. It is also possible that the fire alarm is defective (D), and goes off for 
no reason at all. All of these result in the poor students being evacuated from their 
rooms. At times, the rooms may get flooded with water because of broken plumbing 
(G), which also requires students to evacuate their rooms. 

(a) (2 Point) Draw a directed graphical model over the variables A, B, C, D, E, F, G. 
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Part 2 - Independences:
 
For this part of the problem, we will consider only pairwise independences i.e. in-
dependences of the form X ⊥⊥ Y |Z , where X and Y are sets consisting of a single 
random variable, and Z is an arbitrary set of variables. With respect to the graphical 
model obtained in part 1, answer the following questions: 

(b) (2 Point) List all unconditional pairwise independences (i.e. Z = φ) among the 
variables A, B, C, D, E, F, G. You should write these independences in a 7x7 
table, with a ‘1’ indicating that variables are independent, and ‘0’ indicating 
they are dependent. 
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(c) (2 Point) Now suppose that you are given the variable A, i.e. you know
 
whether or not the fire alarm has gone off. Re-draw the above table for pairwise 
independencies conditional on A. 
Note: In parts (b) and (c), we only care about independencies of the form 
X ⊥⊥ Y |Z where X, Y , and Z are disjoint. You may write an ‘x’ for the 
remaining entries. 
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Part 3 - Probabilities:
 
Next we will assign potentials to the nodes and use them to calculate the probability 
of certain events. To do this, we first define the associated RV’s explicitly. 

Variables: For each event (e.g. A), we assign a binary random variable (e.g. XA), 
which can take values 0 or 1, representing whether or not event A occurs. 

Potentials: For each node in the DAG, we assign potentials as follows: Assume 
a node R has k parents. If all of these parents take the value 0, XR also takes the 
value 0 with probability 1. Else, use the following rules: 

1. For i ∈ {1, 2, . . . k} : PXR|XΠR 
(1| exactly i parents out of k have value 1) = 1 − 1 

2i 

2. For each node R that does not have any parents, we assign PXR (1) = 1
2 

(d) (1 Point) Calculate the probability of burnt cooking given that the fire alarm 
has gone off i.e. find P(XB = 1|XA = 1). 
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(e) (1 Point) Repeat the above calculation with the additional information that 
the fire alarm is also defective i.e. XD = 1. 

6
 



Part 4 - Triangulation:
 
Recall that a graph is said to be chordal if every cycle of length 4 or more in the 
graph has a ‘shortcut’ or ‘chord’, i.e. if some 2 non-consecutive vertices in the cycle 
are connected by an edge. We call the process of converting a graph into a chordal 
graph by adding edges as Triangulation. 

(f) (2 Point) Triangulate the following graph, using as few edges as possible:
 
Hint : Elimination algorithm
 

Figure 1: Problem 1(f)
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Problem 2
 

Consider the directed graphical model below, and answer the following questions. 
Notice Part 1 and Part 2 can be attempted independently. 

X1 X2

X3 X4

X6X5

Figure 2: Original Directed Graph 

Part 1 - Conversions Among Different Types of Graphical Models 

(a) (1 Point) Assume the directed graph is a P-map for the associated distribution. 
Find the minimal undirected I-map for this distribution. 
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(b) (1 Point) Compare the original directed graph and the undirected graph you
 
found in (a), are there any conditional or unconditional independence that is 
satisfied by the original directed graph but not the undirected graph? List all 
such independences. If there isn’t any, write empty set. 
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(c) (1 Point) Turn the undirected graph you got from (a) into a factor graph.
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(d) (1 Point) Find a minimal directed I-map for the factor graph you got in (c) 
using ordering 1, 2, 3, 4, 5, 6. 
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Part 2 - Gaussian Graphical Models 
For part 2, consider a multi-variate Gaussian distribution over x1, x2, x3, x4, x5, x6 

for which Figure 2 is a P-map. Let J be the information matrix for the Gaussian 
distribution. 

(e) (3 Point) In the table below, indicate which entries of J must be zero. Place 
‘0’s in those entries and leave the rest empty. Provide a brief explanation of 
your reasoning. 

J = 

X1

X2

X3

X4

X5

X6

X1 X2 X3 X4 X5 X6

Figure 3: Problem 2(e)
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(f) (3 Point) If we marginalize over x3, we get a new multi-variate Gaussian over 
variables x1, x2, x4, x5, x6. Denote the information matrix of this new distribu­
tion as J " . Indicate which entries of J " must be zero. Place ‘0’s in those entries 
and leave the rest empty. Provide a brief explanation of your reasoning. 

J’ = 

X1

X2

X4

X5

X6

X1 X2 X4 X5 X6

Figure 4: Problem 2(f)
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Problem 3
 

This problem explains how graphical model inference can be used for Bayesian in­
ference with mixture distribution model. Such a model captures various scenarios in 
practice including Natural Language Processing, Social Data Processing, Finance, etc. 

Part 1 
We start with the simplest possible mixture distribution, a binary valued (i.e. takes 
value in {0, 1}) random variable, denoted by X, which is made of mixture of K 
components. We describe this precisely as follows. 

Let there be K different coins, each with different biases, p1, . . . , pK ∈ [0, 1]. That is, 
when the kth coin is tossed, with probability pk the outcome is head (= 1) and with 
probability 1 − pk the outcome is tail (= 0), for 1 ≤ k ≤ K. These are K different 
components. 

To generate mixture of the above K components, we utilize a multinomial random 
variable that takes value in {1, . . . , K}. Precisely, let T be a random variable such 
that P(T = k) = µk, for 1 ≤ k ≤ K. Then the random variable X is generated as 
follows: first sample T; then toss coin number k if T = k, 1 ≤ k ≤ K; and outcome 
of this coin is equal to X. 

(a) (2 Point) Write down a graphical model description of the above mixture 
distribution. 
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(b) (2 Point) Compute P(X = 1) using the description in (a). Explain how this 
can be done using sum-produce algorithm. 
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Part 2 
Now we shall consider more interesting setting. Let us described mixture distribu­
tion over N + 1 binary valued random variables, (X; Y1, . . . , YN ), with K mixture 
components. 

As before, let the mixture component be denoted by multinomial random variable T 
with P(T = k) = µk, for 1 ≤ k ≤ K. To generate (X; Y1, . . . , YN ), we start by first 
sampling component T. Then, as before, we generate X by tossing coin of bias pk if 
T = k, for 1 ≤ k ≤ K. 

Now (Y1, . . . , YN ) are generated as follows. We are given K (known) N -dimensional 
vectors Θ1 , . . . ΘK ∈ RN . If T = k, then we use vector Θk and generate Y = 
(Y1, . . . , YN ) ∈ {0, 1}N as 

P
 
Y = y

 
∝ exp

 NN 
θk 
i yi

 
, (1) 

i=1 

for y = (y1, . . . , yN ) ∈ {0, 1}N (we used notation Θk = (θ1 
k, . . . , θk ) ∈ RN .N 

(c) (2 Point) Write down a graphical model description of the above described 
mixture distribution. 
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(d) (2 Point) Describe sum-product algorithm to compute P(X = 1|Y = y) given 
observation Y = y, using the description in (c). 
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(e) (2 Point) Describe sum-product algorithm to compute P(Y1 = 1), using the 
description in (c). 
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