6.441 Transmission of Information Problem Set 8

Spring 2010 Due date: April 22

Problem 1 Binary detection

Consider an AWGN channel $Y_i = X_i + N_i$, with $N_i \sim N(0, \sigma^2)$ and power constraint $\frac{1}{n} \sum_i x_i^2 \leq P$.

(a) Use MATLAB, plot the capacity as a function of the signal to noise ratio P/σ^2

(b) Consider a suboptimal strategy as follows: at each time, transmit X_i as $+\sqrt{P}$ or $-\sqrt{P}$. At the receiver, use maximum likelihood detection to detect whether + or - is transmitted. Compute the probability of detection error P_e .

(c) Now each time gives a binary symmetric channel with cross over probability of P_e , compute the capacity of this channel. Argue that we can achieve this capacity by using a binary code to choose + or - to be transmitted at each time. Plot the capacity as a function of the signal-to-noise ratio, and compare with the result in part (a).

(d) Use the same binary input at each time, but do not assume a hard decision to be made at each time. Give an expression of the capacity. How would this capacity compare with the results in (a) and (c)?

Problem 2

Problem 9.7 in Cover and Thomas (second edition)

Problem 3

Problem 9.12 in Cover and Thomas (second edition)

6.441 Information Theory Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.