LECTURE 1

Introduction

2 Handouts

Lecture outline
e Goals and mechanics of the class
e notation
e entropy: definitions and properties

e mutual information: definitions and prop-
erties

Reading: Ch. 1, Scts. 2.1-2.5.



Goals

Our goals in this class are to establish an
understanding of the intrinsic properties of
transmission of information and the rela-
tion between coding and the fundamental
limits of information transmission in the
context of communications

Our class is not a comprehensive introduc-
tion to the field of information theory and
will not touch in a significant manner on
such important topics as data compression
and complexity, which belong in a source-
coding class

Notation
— random variable (r.v.) : X
— sample value of a random variable : x

— set of possible sample values x of the
rv. X . X

— Probability mass function (PMF) of a
discrete r.v. X : Px(x)

— Probability density function (pdf) of a
continuous r.v. : px(x)



Entropy

e Entropy is a measure of the average un-
certainty associated with a random vari-
able

e Theentropy ofadiscreter.v. X is H(X) =
— > gex Px(z)loga (Px(x))

e entropy is always non-negative

e Joint entropy: the entropy of two dis-
crete r.v.s X, Y with joint PMF Px y(z,y)
IS:

H(X,Y) = = Yaexyey Px,y (@ y)logz (Pxy (2, 1))

e Conditional entropy: expected value of
entropies calculated according to condi-
tional distributions H(Y |X) = Ez[H(Y | X =
Z)] for r.v. Z independent of X and
identically distributed with X. Intuitively,
this is the average of the entropy of Y
given X over all possible values of X.



Conditional entropy: chain rule

H(Y|X) = Ez[HY|X = Z)]
= — > Px(2) ) Py x(lz)loga[Py x(ylz)]

reX yey
= — ). Pxy(z,y)loga[Py x(y|z)]
reX,yey

Compare with joint entropy:

H(X,Y)

= — Y  Pxy(z,y)logs[Pxy(z,y)]
rEX ,ye)

= — Z PX,Y(CI%ZU)|Og2:PY|X(y|x)PX(:E)]
rEX ,ye)

= — ) Pxy(z,y)1092[Pyx(y|z)]
reX,yey

— Y. Pxy(z,y)loga[Px(x)]
xeX ycy
= H(Y|X)+ H(X)

This is the Chain Rule for entropy:

H(X1,...,Xn) =Y H(X;| X1 ... X;_1). Ques-
tion: H(Y|X) = H(X|Y)?



Relative entropy

Relative entropy is a measure of the dis-
tance between two distributions, also known
as the Kullback Leibler distance between
PMFs Px(xz) and Py (y).

Definition:

D(Px||[Py) = Yzex Px(z) 109 (?;&3)

in effect we are considering the log to be a
r.v. of which we take the mean (note that
we assume 0 Iog(%) = 0 and plog(§) = oo



Mutual information

Mutual Information: let X,Y be r.v.s with
joint PMF Px y(z,y) and marginal PMFs

Px(z) and Py (y)

Definition:
I(X;Y)
Pxy(x,y)
= )  Pxy(z,y)log (P Ry
reXyey () Py (v)

= D (Pxy(z,1)||Px (@) Py (1))
intuitively: measure of how dependent the
r.v.s are

Useful expression for mutual information:

I(X:;Y)=H(X)+ HY) - HX,Y)
H(Y) - HY|X)

H(X) — H(X|Y)

I(Y: X)

Question: what is I(X; X)7



Mutual information chain rule

Conditional mutual information: I(X;Y|Z) =
H(X|2) - H(X]Y, Z)

I(X1,...,XnY)
H(Xq,...,Xp) — H(X1,...,Xn|Y)
H(Xq,...,Xp) — H(X1,...,Xn|Y)

mn
= Y H(X|X1...X;_1)

=1
mn
~ Y H(Xi|X1... X1, Y)
=1
n
= Y I(X;Y|X1... X 1)
=1

Look at 3 r.v.s: I(X1,X2,Y)=1(X1;Y) +
I(X5;Y|Xq1) where I(X5; Y|Xq) is the extra
information about Y given by X5, but not
given by X34
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