
LECTURE 1


Introduction


2 Handouts


Lecture outline


Goals and mechanics of the class • 

notation • 

entropy: definitions and properties • 

mutual information: definitions and prop­• 

erties 

Reading: Ch. 1, Scts. 2.1-2.5. 



Goals


Our goals in this class are to establish an 
understanding of the intrinsic properties of 
transmission of information and the rela­
tion between coding and the fundamental 
limits of information transmission in the 
context of communications 

Our class is not a comprehensive introduc­
tion to the field of information theory and 
will not touch in a significant manner on 
such important topics as data compression 
and complexity, which belong in a source-
coding class 

Notation


–	 random variable (r.v.) : X 

–	 sample value of a random variable : x


–	 set of possible sample values x of the

r.v. X : X 

–	 Probability mass function (PMF) of a 
discrete r.v. X : PX(x) 

–	 Probability density function (pdf) of a 
continuous r.v. : pX(x) 



Entropy


Entropy is a measure of the average un­• 

certainty associated with a random vari­

able 

The entropy of a discrete r.v. X is H(X) =
• 

PX(x)log2 (PX(x))
− 
�

x∈X


entropy is always non-negative • 

Joint entropy: the entropy of two dis­• 

crete r.v.s X, Y with joint PMF PX,Y (x, y) 

is: 

H(X, Y ) = − 
�

x∈X ,y∈Y PX,Y (x, y)log2 

�
PX,Y (x, y)

� 

Conditional entropy: expected value of • 

entropies calculated according to condi­

tional distributions H(Y X) = EZ[H(Y X =| |
Z)] for r.v. Z independent of X and


identically distributed with X. Intuitively,


this is the average of the entropy of Y


given X over all possible values of X.




Conditional entropy: chain rule 

H(Y X) = EZ[H(Y X = Z)] 

= − 
�|

PX(x) 
� 

PY |
|
X(y|x)log2[PY |X(y|x)] 

x∈X y∈Y 

= − 
� 

PX,Y (x, y) log2[PY |X(y|x)] 
x∈X ,y∈Y 

Compare with joint entropy: 

H(X, Y ) 

= − 
� 

PX,Y (x, y) log2[PX,Y (x, y)] 
x∈X ,y∈Y 

= − 
� 

PX,Y (x, y) log2[PY |X(y|x)PX(x)] 
x∈X ,y∈Y


= − 
� 

PX,Y (x, y) log2[PY |X(y|x)]

x∈X ,y∈Y


− 
� 

PX,Y (x, y) log2[PX(x)]

x∈X ,y∈Y


= H(Y X) + H(X)
|
This is the Chain Rule for entropy: 

H(X1, . . . , Xn) = 
�n

i=1 H(Xi|X1 . . . Xi−1). Ques­
tion: H(Y X) = H(X Y )?| |



Relative entropy


Relative entropy is a measure of the dis­

tance between two distributions, also known 

as the Kullback Leibler distance between 

PMFs PX(x) and PY (y). 

Definition: 

D(PX ||PY ) = 
�

x∈X PX(x) log 
�

PX (x)
� 

PY (x) 

in effect we are considering the log to be a


r.v. of which we take the mean (note that 

we assume 0 log(0) = 0 and p log(p ) = ∞p 0



Mutual information


Mutual Information: let X, Y be r.v.s with 
joint PMF PX,Y (x, y) and marginal PMFs 
PX(x) and PY (y) 

Definition: 

I(X; Y ) � 
PX,Y (x, y) 

� 

= 
� 

PX,Y (x, y) log 
PX(x)PY (y)x∈X ,y∈Y


= D 
�
PX,Y (x, y)||PX(x)PY (y)

�


intuitively: measure of how dependent the

r.v.s are 

Useful expression for mutual information:


I(X; Y ) = H(X) + H(Y ) − H(X, Y ) 

= X)
H(Y ) − H(Y |

= Y )
H(X) − H(X|

= I(Y ; X) 

Question: what is I(X; X)?




� 

Mutual information chain rule


Conditional mutual information: I(X; Y Z) =
|
H(X|Z) − H(X|Y, Z) 

I(X1, . . . , Xn; Y ) 

= H(X1, . . . , Xn) − H(X1, . . . , Xn|Y ) 

= H
n
(X1, . . . , Xn) − H(X1, . . . , Xn|Y ) 

=
 H(Xi|X1 . . . Xi−1)

i=1


n�

− 

n�


H(Xi|X1 . . . Xi−1, Y )

i=1


=
 I(Xi; Y |X1 . . . Xi−1)

i=1 

Look at 3 r.v.s: I(X1, X2; Y ) = I(X1; Y ) +


I(X2; Y X1) where I(X2; Y X1) is the extra | |
information about Y given by X2, but not 

given by X1 
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