LECTURE 2

Convexity and related notions

Last time:
e Goals and mechanics of the class
e notation
e entropy: definitions and properties

e mutual information: definitions and prop-
erties

Lecture outline
e Convexity and concavity
e Jensen’s inequality
e Positivity of mutual information
e Data processing theorem

e Fano’'s inequality

Reading: Scts. 2.6-2.8, 2.11.



Convexity

Definition: a function f(x) is convex over
(a,b) iff Vz1,25 € (a,b) and 0 < A <1

fz1 4+ (1 —=XN)z2) < Af(x1) + (1 =) f(x2)

and is strictly convex iff equality holds iff
A=0or =1,

f is concave iff —f is convex.
Convenient test: if f has a second deriva-

tive that is non-negative (positive) every-
where , then f is convex (strictly convex)



Jensen’s inequality

if f is a convex function and X is a r.v.,
then

Ex[f(X)] = f(Ex[X])

if f is strictly convex, then Ex[f(X)] =
f(Ex[X]) = X = E[X].



Concavity of entropy

Let f(z) = —zlog(x) then

f'x) = —wlog(e) ~ 0g()
—log(z) — log(e)
and
f* (2) =~ log(e) < 0
for x > O.

H(X) = Ypen) F(Px(2))

thus the entropy of X is concave in the
value of Px(x) for every z.

Thus, consider two random variables, X;
and X»> with common X. Then the ran-
dom variable X defined over the same X
such that PX(m) = )\PXl(:B)+(1—)\)PX2(:B)
satisfies:

H(X) > AH(X1) + (1 =M H(X?).



Maximum entropy

Consider any random variable X{ on X. For
simplicity, consider X = {1,...,|X|} (we
just want to use the elements of X as in-
dices). Now consider X21 a random vari-
able such szl(x) = PX%(shift(;c)) where
shift denotes the cyclic shift on (1,...,X).
Clearly H(X{) = H(X3). Moreover, con-
sider X% defined over the same X such that
PX%(CU) = )\lel(a:) + (1 — )\)PX21(33) then

H(X?) > H(X?).

We can show recursively with the obvious
extension of notation that

H(X?) > H(XT")

vn > m > 1. Now limp—ooPxn(z) = ﬁ
Vr € X. Hence, the uniform distribution
maximizes entropy and H(X) < log(|X]).



Conditioning reduces entropy

H(Y|X) = Bx[H(Y|X = 2)]

= = > Px(@) ) Pyx(ylx)loga[Py x(y|z)]
rxeX yey

Py (y) = X zex Px (@) Py x(y|z) hence by con-
cavity H(Y|X) < H(Y).

Hence I(X;Y) = H(Y) — H(Y|X) > 0.

Independence bound:

H(X1,....Xn)
n
= ) H(X;|X1,...,X;_1)
i=1

< zn: H(X;)
i=1

Question: H(Y|X =x) < H(Y)~



Mutual information and transition
probability

Let us call Py x(ylz) the transition proba-
bility from X to Y. Consider a r.v. Z that
takes values O and 1 with probability 8 and
1 —60 and s.t.

Py|x,z(ylz,0) = Py x(y|z)

Py|x,z(ylz,1) = Py x(y|z)

and Z is independent from X
I(X;(Y,2) =I(X;2)+ I(X;Y|2Z)
and
I(X;(Y,2) =1(X;Y)+ I(X; Z]Y)
hence
I(X;Y|Z) 2 I(X}Y)
SO

0I(X:Y|Z =0)+(1-0)I(X;Y|Z=1) > I(X;Y)

For a fixed input assignment, I(X;Y) is
convex in the transition probabilities



Mutual information and input
probability

Consider a r.v. Z such that Py z(z[0) =
P'(x), Py z(z|1) = P"(zx), Z takes values O
and 1 with probability § and 1 — 6 and Z
and Y are conditionally independent, given
X

I(Y;Z|X) =0
and
IV (Z2,X)) = I(Y:2)+I(Y: X|2)
= I(V; X))+ I(Y; Z|X)
SO

I(X;Y|2) < I(X;Y).

Mutual information is a concave function
of the input probabilities.

Exercise: jamming game in which we try
to maximize mutual information and jam-
mer attempts to reduce it. What will the
policies be?



Markov chain

Markov chain:
random variables X, Y, Z form a Markov chain

in that order X — Y — Z if the joint PMF
can be written as

Pxy,z(z,y,2) = PX(:c)Py|X(y|x)PZ|Y(z|y).



Markov chain

Consequences:

o X —Y — Ziff X and Z are conditionally
independent given Y

PX,Z|Y($72’|?/)
Pxy z(z,y,2)

Py (y)

Px y(z,y)
Py (y)

= Pxy(zly)Pzy(2]y)

so Markov implies conditional indepen-
dence and vice versa

Pzy(zly)

e X Y 77 —-Y — X (see above
LHS and last RHS)



Data Processing Theorem
If X Y — Z then I(X;Y) > I(X; Z)
I(X,Y,2)=1(X,;Z)+ I(X,Y|Z)
I(X:;Y,2)=1(X;Y)+ I(X; Z|]Y)

X and Z are conditionally independent given
Y,so0 I(X;Z]Y)=0

hence I(X;Z) + I(X;Y|Z) = I(X;Y) so
I(X;Y) > I(X; Z) with equality iff I(X;Y|Z) =
0

note: X — 7Z —-Y & I(X,;Y|Z) =0Y
depends on X only through Z

Consequence: you cannot "undo” degra-
dation



Consequence: Second Law of
T hermodynamics

The conditional entropy H(Xy|Xg) is non-
decreasing as n increases for a stationary
Markov process Xg,..., Xn

Look at the Markov chain Xg — X,,_1 —
Xn,

DPT says

I(Xo; Xp—1) = I(Xo; Xn)

H(Xp 1)—H(Xpn—1|X0) > H(Xn)—H(Xn|X0o)
so H(X,—1/Xo) < H(Xn|X0o)

Note: we still have that H(X,|Xg) < H(Xy).



Fano’s lemma

Suppose we have r.v.s X and Y, Fano’s
lemma bounds the error we expect when
estimating X from Y

We generate an estimator of X that is X =
g(Y).

Probability of error P. = Pr(X # X)

Indicator function for error E which is 1
when X = X and 0 otherwise. Thus, P, =
P(E = 0)

Fano's lemma:

H(E) + Pelog(|X| — 1) > H(X|Y)



IA A |

Proof of Fano’s lemma

H(E, X|Y)
H(X|Y) + HE|X,Y)
H(X|Y)

H(E, X|Y)
H(E|Y) + H(X|E,Y)

H(E|Y) < H(E)

H(X|E,Y)

P.H(XIE=0,Y)+ (1 - P)H(X|E=1,Y)
P.H(X|E=0,Y)

P.H(X|E = O)

Pelog(|X| —1)
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