
LECTURE 2


Convexity and related notions


Last time:


Goals and mechanics of the class • 

notation • 

entropy: definitions and properties • 

mutual information: definitions and prop­• 

erties 

Lecture outline


Convexity and concavity • 

Jensen’s inequality • 

Positivity of mutual information • 

Data processing theorem • 

Fano’s inequality • 

Reading: Scts. 2.6-2.8, 2.11. 



Convexity


Definition: a function f(x) is convex over 

(a, b) iff ∀x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1 

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f(x2) 

and is strictly convex iff equality holds iff 

λ = 0 or λ = 1. 

f is concave iff −f is convex. 

Convenient test: if f has a second deriva­


tive that is non-negative (positive) every­


where , then f is convex (strictly convex)




Jensen’s inequality


if f is a convex function and X is a r.v., 

then 

EX[f(X)] ≥ f(EX[X]) 

if f is strictly convex, then EX[f(X)] = 

f (EX[X]) X = E[X].⇒ 



Concavity of entropy 

Let f(x) = −x log(x) then 

1 
f �(x) = −x log(e) 

x 
− log(x) 

= − log(x) − log(e) 

and 
1 

f”(x) = − log(e) < 0

x 

for x > 0. 

f(PX(x))H(X) = 
�

x∈|X |


thus the entropy of X is concave in the

value of PX(x) for every x.


Thus, consider two random variables, X1

and X2 with common X . Then the ran­

dom variable X defined over the same

such that PX(x) = λPX1

(x) + (1 − λ)PX2
(x)


satisfies:


H(X) ≥ λH(X1) + (1 − λ)H(X2).


X 



Maximum entropy


Consider any random variable X1
1 on X . For 

simplicity, consider X = {1, . . . , |X |} (we 

just want to use the elements of X as in­

dices). Now consider X2
1 a random vari­

able such PX1(x) = PX1(shift(x)) where 
2 1 

shift denotes the cyclic shift on (1, . . . , X ). 

Clearly H(X1
1) = H(X2

1). Moreover, con­

sider X1
2 defined over the same X such that 

PX2(x) = λPX1(x) + (1 − λ)PX1(x) then 
1 1 2 

H(X1
2) ≥ H(X1

1). 

We can show recursively with the obvious 

extension of notation that 

H(X1 
n) ≥ H(X1 

m) 

∀n > m ≥ 1. Now limn→∞PX1 
n(x) = |X 

1 
|

∀x ∈ X . Hence, the uniform distribution 

maximizes entropy and H(X) ≤ log(|X |). 



Conditioning reduces entropy


H(Y X) = EZ[H(Y X = Z)] 

= − 
�|

PX(x) 
� 

PY |

|
X(y|x)log2[PY |X(y|x)] 

x∈X y∈Y 

PY (y) = 
�

x∈X PX(x)PY |X(y|x) hence by con­

cavity H(Y |X) ≤ H(Y ). 

Hence I(X; Y ) = H(Y ) − H(Y |X) ≥ 0. 

Independence bound: 

H(X1, . . . , Xn) 
n

= 
� 

H(Xi|X1, . . . , Xi−1) 
i=1 
n� 

H(Xi)
≤ 
i=1


Question: H(Y |X = x) ≤ H(Y )? 



Mutual information and transition

probability


Let us call PY X(y x) the transition proba­| |
bility from X to Y . Consider a r.v. Z that 
takes values 0 and 1 with probability θ and 
1 − θ and s.t. 

PY |X,Z(y|x, 0) = PY
�
|X(y|x) 

PY |X,Z(y|x, 1) = PY
��
|X(y|x) 

and Z is independent from X 

I(X; (Y, Z)) = I(X; Z) + I(X; Y Z)|
and 

I(X; (Y, Z)) = I(X; Y ) + I(X; Z Y )|
hence 

I(X; Y |Z) ≥ I(X; Y ) 

so 

θI(X; Y |Z = 0)+(1−θ)I(X; Y |Z = 1) ≥ I(X; Y ) 

For a fixed input assignment, I(X; Y ) is 
convex in the transition probabilities 



X 

Mutual information and input

probability


Consider a r.v. Z such that PX Z(x 0) = | |
P �(x), PX Z(x 1) = P ��(x), Z takes values 0 | |
and 1 with probability θ and 1 − θ and Z

and Y are conditionally independent, given


I(Y ; Z X) = 0
|

and 

I(Y ; (Z, X)) = I(Y ; Z) + I(Y ; X Z)
|
= I(Y ; X) + I(Y ; Z X)|

so 

I(X; Y |Z) ≤ I(X; Y ).


Mutual information is a concave function 
of the input probabilities. 

Exercise: jamming game in which we try 
to maximize mutual information and jam­
mer attempts to reduce it. What will the 
policies be? 



Markov chain


Markov chain: 

random variables X, Y, Z form a Markov chain 

in that order X Y Z if the joint PMF → →
can be written as


PX,Y,Z(x, y, z) = PX(x)PY X(y x)PZ Y (z y).
| | | |



Markov chain


Consequences: 

X Y Z iff X and Z are conditionally • → →
independent given Y 

PX,Z Y (x, z|y)|
PX,Y,Z(x, y, z) 

= 
PY (y) 

PX,Y (x, y) 
= PZ Y (z y)

PY (y) | |
= PX Y (x y)PZ Y (z y)| | | |

so Markov implies conditional indepen­

dence and vice versa 

X Y Z Z Y X (see above • → → ⇔ → →
LHS and last RHS) 



Data Processing Theorem 

If X Y Z then I(X; Y ) ≥ I(X; Z)→ → 

I(X; Y, Z) = I(X; Z) + I(X; Y Z)|

I(X; Y, Z) = I(X; Y ) + I(X; Z Y )|

X and Z are conditionally independent given 

Y , so I(X; Z Y ) = 0 |

hence I(X; Z) + I(X; Y Z) = I(X; Y ) so|
I(X; Y ) ≥ I(X; Z) with equality iff I(X; Y |Z) = 

0 

note: X Z Y I(X; Y Z) = 0 Y → → ⇔ |
depends on X only through Z 

Consequence: you cannot ”undo” degra­

dation 



Consequence: Second Law of


Thermodynamics


The conditional entropy H(Xn X0) is non­|
decreasing as n increases for a stationary 

Markov process X0, . . . , Xn 

Look at the Markov chain X0 → Xn−1 →
Xn 

DPT says


I(X0; Xn−1) ≥ I(X0; Xn)


H(Xn−1)−H(Xn−1|X0) ≥ H(Xn)−H(Xn|X0) 

so H(Xn−1|X0) ≤ H(Xn|X0) 

Note: we still have that H(Xn|X0) ≤ H(Xn). 



�

�

Fano’s lemma


Suppose we have r.v.s X and Y , Fano’s 

lemma bounds the error we expect when 

estimating X from Y 

We generate an estimator of X that is � =X 

g(Y ). 

Probability of error Pe = Pr( � = X)X 

Indicator function for error E which is 1 

when X = X and 0 otherwise. Thus, Pe = 

P (E = 0)


Fano’s lemma:


H(E) + Pe log(|X | − 1) ≥ H(X|Y )




Proof of Fano’s lemma


H(E, X Y )|
= H(X Y ) + H(E X, Y )| |
= H(X Y )|

H(E, X Y )|
= H(E Y ) + H(X E, Y )| |

H(E|Y ) ≤ H(E) 

H(X E, Y )|
= PeH(X|E = O, Y ) + (1 − Pe)H(X|E = 1, Y ) 

= PeH(X E = O, Y )|
≤ PeH(X|E = O) 

≤ Pe log(|X | − 1) 
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