
LECTURE 3 

Convergence and Asymptotic


Equipartition Property


Last time: 

Convexity and concavity • 

Jensen’s inequality • 

Positivity of mutual information
• 

Data processing theorem • 

Fano’s inequality • 

Lecture outline 

Types of convergence • 

Weak Law of Large Numbers • 

Strong Law of Large Numbers
• 

Asymptotic Equipartition Property • 

Reading: Scts. 3.1-3.2. 



Types of convergence


Recall what a random variable is: a map­


ping from its set of sample values Ω onto


R 

X :
 Ω �→ R


ξ X(ξ)→


In the cases we have been discussing, Ω = 

X and we map onto [0, 1] 



Types of convergence


Sure convergence: a random sequence
• 
X1, . . . converges surely to r.v. X if ∀ξ ∈
Ω the sequence Xn(ξ) converges to X(ξ) 
as n →∞ 

Almost sure convergence (also called con­• 
vergence with probability 1) the random 
sequence converges a.s. (w.p. 1) to X 
if the sequence X1(ξ), . . . converges to 
X(ξ) for all ξ except possibly on a set of 
Ω of probability 0 

Mean-square convergence: X1, . . . con­• 
verges in m.s. sense to r.v. X if 

limn→∞ EXn[|Xn − X|2] → 0 

Convergence in probability: the sequence
• 
converges in probability to X if ∀� > 0


limn→∞ Pr[|Xn − X| > �] → 0 

Convergence in distribution: the sequence • 
converges in distribution if the cumula­
tive distribution function Fn(x) = Pr(Xn ≤ 
x) satisfies limn→∞ Fn(x) FX(x) at all → 
x for which F is continuous. 



Relations among types of convergence


Venn diagram of relation: 



Weak Law of Large Numbers 

X1, X2, . . . i.i.d. 

finite mean µ and variance σ2 

X1 + + Xn
Mn = 

· · · 
n 

E[Mn] = • 

Var(Mn) = • 

σ2 
Pr(|Mn − µ| ≥ �) ≤ 

n�
X 
2 



Weak Law of Large Numbers


Consequence of Chebyshev’s inequality: Ran­

dom variable X 

σ2 = 
� 

(x − E[X])2PX(x)X 
x∈X 

σ2 
X ≥ c 2 Pr(|X − E[X]| ≥ c) 

σ2 
Pr(|X − E[X]| ≥ c) ≤ 

c
X 
2 

1 
Pr(|X − E[X]| ≥ kσX) ≤ 

k2 



Strong Law of Large Numbers


Theorem: (SLLN) If Xi are IID, and EX[ X ] <| |
∞, then 

X1 + + Xn
Mn = 

· · · 
EX[X], w.p.1. 

n 
→ 



AEP


If X1, . . . , Xn are IID with distribution PX, 

then 

1− log(PX1,...,Xn(x1, . . . , xn)) → H(X) in prob­n 
ability 

Notation: Xi
j = (Xi, . . . , Xj) (if i = 1, gen­

erally omitted) 

Proof: create r.v. Y that takes the value 

yi = − log(PX(xi)) with probability PX(xi) 

(note that the value of Y is related to its 

probability distribution) 

we now apply the WLLN to Y 



AEP


1 −	
n 

log(PXn(xn)) 

1 n

= 
� 

log(PX(xi))−
n i=1 

1 n

= 
� 

yi 
n i=1 

using the WLLN on Y 

n 
1 �n

i=1 yi EY [Y ] in probability → 

EY [Y ] = −EZ[log(PX(Z))] = H(X) 

for some r.v. Z identically distributed with 

X 



Consequences of the AEP: the typical

set


Definition: A� 
(n) is a typical set with respect 

to PX(x) if it is the set of sequences in the 
set of all possible sequences xn n with∈ X
probability: 

2−n(H(X)+�) ≤ PXn (xn) ≤ 2−n(H(X)−�) 

equivalently 

1 
H(X) − � ≤ − 

n 
log(PXn (xn)) ≤ H(X) + � 

As n increases, the bounds get closer to­
gether, so we are considering a smaller range 
of probabilities 

We shall use the typical set to describe a 
set with characteristics that belong to the 
majority of elements in that set. 

Note: the variance of the entropy is finite




� 

Consequences of the AEP: the typical


set


Why is it typical? AEP says ∀� > 0, ∀δ > 0, 

∃n0 such that ∀n > n0 

Pr(A� 
(n)) ≥ 1 − δ 

(note: δ can be �) 

How big is the typical set? 

1 = 
� 

PXn (xn) 
xn∈X n 

� 
PXn (xn)≥ 

xn∈A
(n) 

≥ 
� 

2−n(H(X)+�) 

xn
� 
(n)∈A

| � 
(n)|2−n(H(X)+�)= A

⇒ |A� 
(n)| ≤ 2n(H(X)+�) 



� 

Pr(A� 
(n)) ≥ (1 − �) 

⇒ 1 − � ≤ 
� 

(n) 

PXn (xn) 

xn∈A� 

≤ |A� 
(n)|2−n(H(X)−�) 

⇒ |A(n)| ≥ 2n(H(X)−�)(1 − �) 

Visualize: 



Consequences of the AEP: using the


typical set for compression


Description in typical set requires no more 

than n(H(X) + �) + 1 bits (correction of 1 

bit because of integrality) 

(n)C 
Description in atypical set A� requires 

no more than n log(|X |) + 1 bits 

Add another bit to indicate whether in A� 
(n) 

or not to get whole description 



Consequences of the AEP: using the


typical set for compression


Let l(xn) be the length of the binary de­

≤ PXn (xn) (n(H(X) + δ) + 2) 

scription of xn 

∀� > 0, ∃n0 s.t. ∀n > n0, 

EXn[l(Xn)] 

= 
� 

PXn (x n) l(x n) + 
� 

PXn (x n) l(x n) 

xn∈Aδ 
(n) 

� 
xn∈Aδ 

(n)C 

(n)
xn∈Aδ 

+ 
� 

PXn (xn) (n log(|X |) + 2) 
(n)C 

xn∈Aδ 

= nH(X) + n� + 2 

for δ small enough with respect to �


so EXn[1l(Xn)] ≤ H(X)+� for n sufficientlyn 
large.




Jointly typical sequences 

A� 
(n) is a typical set with respect to PX,Y (x, y) 

if it is the set of sequences in the set of all 

possible sequences (xn, y n n withn) ∈ X × Y
probability: 

2−n(H(X)+�) ≤ PXn (xn) ≤ 2−n(H(X)−�) 

2−n(H(Y )+�) ≤ PY n 

�
yn

� 
≤ 2−n(H(Y )−�) 

2−n(H(X,Y )+�) ≤ PXn,Y n 

�
xn, y n

� 
≤ 2−n(H(X,Y )−�) 

for (Xn, Y n) sequences of length n IID ac­
ncording PXn,Y n(x , yn) = 

�
i
n 
=1 PX,Y (xi, yi) 

Pr((Xn, Y n) ∈ A(
�
n)) 1 as n →∞ → 



� 

Jointly typical sequences


Use the union bound 

Pr((Xn, Y n) �∈ A� 
(n))


≤ Pr((Xn, Y n) �∈ A���� 
(n))


+ Pr((Xn) �∈ A��(n)) 

+ Pr((Y n) �∈ A�
� (n)) 

For A��� single typical sequence for pair, A�� 
for X and A� for Y 

each element in the RHS goes to 0 
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