LECTURE 3

Convergence and Asymptotic Equipartition Property

Last time:

- Convexity and concavity
- Jensen's inequality
- Positivity of mutual information
- Data processing theorem
- Fano's inequality

Lecture outline

- Types of convergence
- Weak Law of Large Numbers
- Strong Law of Large Numbers
- Asymptotic Equipartition Property

Reading: Scts. 3.1-3.2.

Types of convergence

Recall what a random variable is: a mapping from its set of sample values Ω onto ${\cal R}$

$$\begin{array}{ccc} X &\colon & \Omega \mapsto \mathcal{R} \\ & \xi \to X(\xi) \end{array}$$

In the cases we have been discussing, $\Omega=\mathcal{X}$ and we map onto [0,1]

Types of convergence

- Sure convergence: a random sequence X_1, \ldots converges surely to r.v. X if $\forall \xi \in \Omega$ the sequence $X_n(\xi)$ converges to $X(\xi)$ as $n \to \infty$
- Almost sure convergence (also called convergence with probability 1) the random sequence converges a.s. (w.p. 1) to X if the sequence X₁(ξ),... converges to X(ξ) for all ξ except possibly on a set of Ω of probability 0
- Mean-square convergence: X_1, \ldots converges in m.s. sense to r.v. X if

 $\lim_{n \to \infty} E_{X_n}[|X_n - X|^2] \to 0$

• Convergence in probability: the sequence converges in probability to X if $\forall \epsilon > 0$

 $\lim_{n\to\infty} \Pr[|X_n - X| > \epsilon] \to 0$

• Convergence in distribution: the sequence converges in distribution if the cumulative distribution function $F_n(x) = Pr(X_n \le x)$ satisfies $\lim_{n\to\infty} F_n(x) \to F_X(x)$ at all x for which F is continuous.

Relations among types of convergence

Venn diagram of relation:

Weak Law of Large Numbers

 X_1, X_2, \ldots i.i.d. finite mean μ and variance σ^2

$$M_n = \frac{X_1 + \dots + X_n}{n}$$

• $\mathbf{E}[M_n] =$

•
$$Var(M_n) =$$

$$\mathsf{Pr}(|M_n - \mu| \ge \epsilon) \le \frac{\sigma_X^2}{n\epsilon^2}$$

Weak Law of Large Numbers

Consequence of Chebyshev's inequality: Random variable \boldsymbol{X}

$$\sigma_X^2 = \sum_{x \in \mathcal{X}} (x - \mathbf{E}[X])^2 P_X(x)$$

$$\sigma_X^2 \geq c^2 \Pr(|X - \mathbf{E}[X]| \geq c)$$

$$\Pr(|X - \mathbb{E}[X]| \ge c) \le \frac{\sigma_X^2}{c^2}$$

$$\mathsf{Pr}(|X - \mathbf{E}[X]| \ge k\sigma_X) \le rac{1}{k^2}$$

Strong Law of Large Numbers

Theorem: (SLLN) If X_i are IID, and $E_X[|X|] < \infty$, then

$$M_n = \frac{X_1 + \dots + X_n}{n} \to E_X[X], \qquad \text{w.p.1.}$$

AEP

If X_1, \ldots, X_n are IID with distribution P_X , then

 $-\frac{1}{n}\log(P_{X_1,\ldots,X_n}(x_1,\ldots,x_n)) \to H(X) \text{ in prob-}$ ability

Notation: $\underline{X}_{i}^{j} = (X_{i}, \dots, X_{j})$ (if i = 1, generally omitted)

Proof: create r.v. Y that takes the value $y_i = -\log(P_X(x_i))$ with probability $P_X(x_i)$ (note that the value of Y is related to its probability distribution)

we now apply the WLLN to Y

AEP

$$-\frac{1}{n}\log(P_{\underline{X}^n}(\underline{x}^n))$$

$$= -\frac{1}{n}\sum_{i=1}^n\log(P_X(x_i))$$

$$= \frac{1}{n}\sum_{i=1}^n y_i$$

using the WLLN on \boldsymbol{Y}

 $\frac{1}{n}\sum_{i=1}^{n} y_i \to E_Y[Y]$ in probability

 $E_Y[Y] = -E_Z[\log(P_X(Z))] = H(X)$

for some r.v. \boldsymbol{Z} identically distributed with \boldsymbol{X}

Consequences of the AEP: the typical set

Definition: $A_{\epsilon}^{(n)}$ is a typical set with respect to $P_X(x)$ if it is the set of sequences in the set of all possible sequences $\underline{x}^n \in \underline{\mathcal{X}}^n$ with probability:

 $2^{-n(H(X)+\epsilon)} \le P_{\underline{X}^n}(\underline{x}^n) \le 2^{-n(H(X)-\epsilon)}$

equivalently

$$H(X) - \epsilon \leq -\frac{1}{n} \log(P_{\underline{X}^n}(\underline{x}^n)) \leq H(X) + \epsilon$$

As n increases, the bounds get closer together, so we are considering a smaller range of probabilities

We shall use the typical set to describe a set with characteristics that belong to the majority of elements in that set.

Note: the variance of the entropy is finite

Consequences of the AEP: the typical set

Why is it typical? AEP says $\forall \epsilon > 0, \forall \delta > 0,$ $\exists n_0$ such that $\forall n > n_0$

$$Pr(A_{\epsilon}^{(n)}) \ge 1 - \delta$$

(note: δ can be ϵ)

How big is the typical set?

$$1 = \sum_{\underline{x}^{n} \in \mathcal{X}^{n}} P_{\underline{X}^{n}}(\underline{x}^{n})$$

$$\geq \sum_{\underline{x}^{n} \in A_{\epsilon}^{(n)}} P_{\underline{X}^{n}}(\underline{x}^{n})$$

$$\geq \sum_{\underline{x}^{n} \in A_{\epsilon}^{(n)}} 2^{-n(H(X)+\epsilon)}$$

$$\equiv |A_{\epsilon}^{(n)}| 2^{-n(H(X)+\epsilon)}$$

$$\Rightarrow |A_{\epsilon}^{(n)}| \leq 2^{n(H(X)+\epsilon)}$$

$$Pr(A_{\epsilon}^{(n)}) \ge (1 - \epsilon)$$

$$\Rightarrow \qquad 1 - \epsilon \le \sum_{\underline{x}^n \in A_{\epsilon}^{(n)}} P_{\underline{X}^n}(\underline{x}^n)$$

$$\le |A_{\epsilon}^{(n)}| 2^{-n(H(X) - \epsilon)}$$

$$\Rightarrow \qquad |A_{\epsilon}^{(n)}| \ge 2^{n(H(X) - \epsilon)}(1 - \epsilon)$$

Visualize:

Consequences of the AEP: using the typical set for compression

Description in typical set requires no more than $n(H(X) + \epsilon) + 1$ bits (correction of 1 bit because of integrality)

Description in atypical set $A_{\epsilon}^{(n)^{C}}$ requires no more than $n \log(|\mathcal{X}|) + 1$ bits

Add another bit to indicate whether in $A_{\epsilon}^{(n)}$ or not to get whole description

Consequences of the AEP: using the typical set for compression

Let $l(\underline{x}^n)$ be the length of the binary description of \underline{x}^n

 $\forall \epsilon > 0$, $\exists n_0$ s.t. $\forall n > n_0$,

$$E_{\underline{X}^{n}}[l(\underline{X}^{n})]$$

$$= \sum_{\underline{x}^{n} \in A_{\delta}^{(n)}} P_{\underline{X}^{n}}(\underline{x}^{n}) l(\underline{x}^{n}) + \sum_{\underline{x}^{n} \in A_{\delta}^{(n)}} P_{\underline{X}^{n}}(\underline{x}^{n}) l(\underline{x}^{n})$$

$$\leq \sum_{\underline{x}^{n} \in A_{\delta}^{(n)}} P_{\underline{X}^{n}}(\underline{x}^{n}) (n(H(X) + \delta) + 2)$$

$$+ \sum_{\underline{x}^{n} \in A_{\delta}^{(n)}} P_{\underline{X}^{n}}(\underline{x}^{n}) (n \log(|\mathcal{X}|) + 2)$$

$$= nH(X) + n\epsilon + 2$$

for δ small enough with respect to ϵ

so $E_{\underline{X}^n}[\frac{1}{n}l(\underline{X}^n)] \leq H(X) + \epsilon$ for n sufficiently large.

Jointly typical sequences

 $A_{\epsilon}^{(n)}$ is a typical set with respect to $P_{X,Y}(x,y)$ if it is the set of sequences in the set of all possible sequences $(\underline{x}^n, \underline{y}^n) \in \underline{\mathcal{X}}^n \times \underline{\mathcal{Y}}^n$ with probability:

$$2^{-n(H(X)+\epsilon)} \leq P_{\underline{X}^n}(\underline{x}^n) \leq 2^{-n(H(X)-\epsilon)}$$
$$2^{-n(H(Y)+\epsilon)} \leq P_{\underline{Y}^n}(\underline{y}^n) \leq 2^{-n(H(Y)-\epsilon)}$$
$$2^{-n(H(X,Y)+\epsilon)} \leq P_{\underline{X}^n,\underline{Y}^n}(\underline{x}^n,\underline{y}^n) \leq 2^{-n(H(X,Y)-\epsilon)}$$

for $(\underline{X}^n, \underline{Y}^n)$ sequences of length n IID according $P_{\underline{X}^n, \underline{Y}^n}(\underline{x}^n, \underline{y}^n) = \prod_{i=1}^n P_{X,Y}(x_i, y_i)$

 $Pr((\underline{X}^n, \underline{Y}^n) \in A_{\epsilon}^{(n)}) \to 1 \text{ as } n \to \infty$

Jointly typical sequences

Use the union bound

$$Pr((\underline{X}^{n}, \underline{Y}^{n}) \notin A_{\epsilon}^{(n)})$$

$$\leq Pr((\underline{X}^{n}, \underline{Y}^{n}) \notin A_{\epsilon}^{\prime\prime\prime(n)})$$

$$+ Pr((\underline{X}^{n}) \notin A_{\epsilon}^{\prime\prime(n)})$$

$$+ Pr((\underline{Y}^{n}) \notin A_{\epsilon}^{\prime\prime(n)})$$

For A''' single typical sequence for pair, A'' for X and A' for Y

each element in the RHS goes to 0

6.441 Information Theory Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.