LECTURE 3

Convergence and Asymptotic
Equipartition Property

Last time:
e (Convexity and concavity
e Jensen’s inequality
e Positivity of mutual information
e Data processing theorem

e Fano’'s inequality

Lecture outline
e Types of convergence
e \Weak Law of Large Numbers
e Strong Law of Large Numbers

e Asymptotic Equipartition Property

Reading: Scts. 3.1-3.2.



Types of convergence

Recall what a random variable is: a map-
ping from its set of sample values €2 onto
R

X: Q=R
£ — X(&)

In the cases we have been discussing, 2 =
X and we map onto [0, 1]



Types of convergence

e Sure convergence: a random sequence
X1,... converges surely to r.v. X if V€ €
2 the sequence X, (&) converges to X ()
as n — oo

e AImost sure convergence (also called con-
vergence with probability 1) the random
sequence converges a.s. (w.p. 1) to X
if the sequence Xq(&),... converges to
X (&) for all £ except possibly on a set of
€2 of probability O

e Mean-square convergence: Xq,... CcoOn-
verges in m.s. sense to r.v. X if

e Convergence in probability: the sequence
converges in probability to X if Ve > 0

e Convergence in distribution: the sequence
converges in distribution if the cumula-
tive distribution function F,(z) = Pr(X, <
x) satisfies limy—oo Frn(z) — Fx(x) at all
x for which F' is continuous.



Relations among types of convergence

Venn diagram of relation:



Weak Law of Large Numbers

X1, Xo, ... i.id.
finite mean p and variance o2
Xqd ... X
Mn — 1 + + n
n

0.2
Pr(|Mp — p| > €) <=5
ne



Weak Law of Large Numbers

Consequence of Chebyshev’'s inequality: Ran-
dom variable X

0% = Y (z — E[X])*Px(x)
reX

o% > 2Pr(IX —E[X]| > ¢)

2
Pr(IX —E[X]| > ¢) < °X
C

1
Pr(IX —E[X]| 2 hox) <



Strong Law of Large Numbers

Theorem: (SLLN) If X; areIID, and Ex[|X]] <
oo, then

_ X1+ + Xn
n




AEP

If X4,...,Xn are IID with distribution Py,
then

—410g(Py, . x,(x1,...,2n)) — H(X) in prob-
ability

Notation: X7 = (X;,...,X;) (if i =1, gen-
erally omitted)

Proof. create r.v. Y that takes the value
y; = —log(Px(xz;)) with probability Px(x;)
(note that the value of Y is related to its
probability distribution)

we now apply the WLLN to Y



AEP

_% log(Pxn(z"))
= —1 3" log(Py ()
n,—=1
— l Z Yi

1=1

S

using the WLLN on Y
%Z?:1 y; — Ey[Y] in probability
Ev[Y] = —E[log(Px(2))] = H(X)

for some r.v. Z identically distributed with
X



Consequences of the AEP: the typical
set

Definition: Aé”) is a typical set with respect
to Px(x) if it is the set of sequences in the
set of all possible sequences z™ € X™ with
probability:

2—n(H(X)—I—e) < Pyn (Qn) < 2—n(H(X)—€)

equivalently

H(X) — ¢ <~ log(Pyn (")) < H(X) + ¢

As n increases, the bounds get closer to-
gether, so we are considering a smaller range
of probabilities

We shall use the typical set to describe a
set with characteristics that belong to the

majority of elements in that set.

Note: the variance of the entropy is finite



Consequences of the AEP: the typical
set

Why is it typical? AEP says Ve > 0, V6 > 0,
dng such that Vn > ng

Pr(A™Y)y > 15

(note: § can be ¢)

How big is the typical set?

1 = Y Pxn(z")

e Xn

>, Pxn(z")
xneA§”>
Y onHE))
zne A
|A§n)|2—n(H(X)+e)
N |Agn)‘ < on(H(X)+e)

AV,

1V



Pr(Af™) > (1—¢)

= l1—e< Y Pxn(z")
zreAl™
< \Aé”)|2—n(H(X)—€)

Visualize:



Consequences of the AEP: using the
typical set for compression

Description in typical set requires no more
than n(H(X) 4+ ¢) + 1 bits (correction of 1
bit because of integrality)

o . (n)¢ .
Description in atypical set Ag requires
no more than nlog(|X]) + 1 bits

Add another bit to indicate whether in A{™
or not to get whole description



Consequences of the AEP: using the
typical set for compression

Let I(z™) be the length of the binary de-
scription of z™

Ve > 0, dng s.t. Vn > ng,

Exn[l(X™)]
QneA((gn) gnEAgn)C

< ) Pxn(z") (n(H(X)+d)+2)
Q”EA((S”)

+ > Pxn (2™ (nlog(|X]) +2)
2nEAC(Sn)C

= nH(X) 4+ ne+2

for 6 small enough with respect to ¢

so Exn[11(X™)] < H(X)+e for n sufficiently
large.



Jointly typical sequences

Al is a typical set with respect to Px y (z,y)
if it is the set of sequences in the set of all
possible sequences (gn,gn) c X" x Y" with
probability:

2-n(HG)+) < p,y (1) < 2-n(HE) =)
2-n(HO)+O) < p, (yn) < o—n(HY)=e)

2—n(H(X,Y)—|—e) < Pxn yn <£n,yn) < 2—n(H(X,Y)—e)

for (X", Y™) sequences of length n IID ac-
cording Pxn yn(z",y") = II7—1 Px v (x;,y;)

Pr((X",Y") ¢ AE”)) — 1 as n — oo



Jointly typical sequences

Use the union bound

Pr((X™,Y™) ¢ AM)
Pr((X",Y™) ¢ A(M)
Pr((X™) ¢ AZ(M)
Pr((Y™) ¢ AL(M)

+ + IA

For A’ single typical sequence for pair, A”
for X and A’ forY

each element in the RHS goes to O
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