
LECTURE 4 

Last time: 

Types of convergence • 

Weak Law of Large Numbers • 

Strong Law of Large Numbers
• 

Asymptotic Equipartition Property • 

Lecture outline 

Stochastic processes • 

Markov chains • 

Entropy rate • 

Random walks on graphs • 

Hidden Markov models • 

Reading: Chapter 4. 



Stochastic processes 

A stochastic process is an indexed sequence 

or r.v.s X0, X1, . . . characterized by the joint 

PMF PX0,X1,...,Xn (x0, x1, . . . , xn), (x0, x1, . . . , xn) ∈ 

X n for n = 0, 1, . . .. 

A stochastic process is stationary if 

PX0,X1,...,Xn (x0, x1, . . . , xn) 

= PXl,Xl+1,...,Xl+n 
(x0, x1, . . . , xn) 

for every shift l and all (x0, x1, . . . , xn) ∈ X n . 



Stochastic processes 

A discrete stochastic process is a Markov 
chain if 

PXn|X0,...,Xn−1 

�
xn|x0, . . . , xn−1

� 
= PXn|Xn−1 

�
xn|xn−1

� 

for n = 1, 2, . . . and all (x0, x1, . . . , xn) ∈ X n . 

We deal with time invariant Markov chains 

Xn: state after n transitions 

– belongs to a finite set, e.g., {1, . . . , m} 

– X0 is either given or random 

(given current state, the past does not mat­

ter) 

pi,j = P(Xn+1 = j | Xn = i) 

= P(Xn+1 = j | Xn = i, Xn−1, . . . , X0) 

Markov chain is characterized by probability 
transition matrix P = [pi,j] 



Review of Markov chains


State occupancy probabilities, given initial 

state i: 

ri,j(n) = P(Xn = j X0 = i)| 

Key recursion: 

m

ri,j(n) = 
� 

ri,k(n − 1)pk,j 
k=1 

With random initial state: 
m

P(Xn = j) = 
� 

P(X0 = i)ri,j(n) 
i=1 

Does rij converge to something? 

Does the limit depend on initial state? 



Review of Markov chains


Recurrent and transient states. 

State i is recurrent if: starting from i, and 

from wherever you can go, there is a way 

of returning to i. If not recurrent, called 

transient. Recurrent class collection of re­

current states that “communicate” to each 

other and to no other state. 

A recurrent state is periodic if: there is an 

integer d > 1 such that ri,i(k) = 0 when k 

is not an integer multiple of d 

Assume a single class of recurrent states, 

aperiodic. Then, 

lim ri,j(n) = πjn→∞ 

where πj does not depend on the initial 

conditions 

lim P(Xn = j X0) = πjn→∞ 
| 



π1, . . . , πm can be found as the unique• 

solution of the balance equations 

πj = 
� 

πkpk,j 
k 

together with 
� 

πj = 1 
j 



Entropy rate


The entropy rate of a stochastic process is 

1 
lim H(Xn) 

nn→∞ 

if it exists 

For a stationary stochastic process, the en­
tropy rate exists and is equal to 

lim H(Xn Xn−1)
n→∞ 

|
since conditioning decreases entropy and by 
stationarity, it holds that 

H(Xn+1|Xn)	 ≤ H(Xn+1|X2
n) 

= H(Xn|Xn−1) 

so it reaches a limit (decreasing non-negative 
sequence) 

Chain rule 

1 1 n

n
H(Xn) = 

n 

� 
H(Xi|Xi−1) 

i=1 

since the elements in the sum on the RHS

reach a limit, that is the limit of the LHS




Entropy rate 

Markov chain entropy rate: 

lim H(Xn Xn−1)
n→∞ 

|
= lim H(Xn Xn−1)n→∞ 

|
= H(X2 X1) 

= − 
� 

p

|
i,jπi log(pi,j) 

i,j 



Random walk on graph


Consider undirected graph G = (N , E, W) 

where N , E, W are the nodes, edges and 

weights. With each edge there is an as­

sociated edge weight Wi,j 

=Wi,j Wj,i 

Wi = 
� 

Wi,j 
j 

W = 
� 

Wi,j 
i,j:j>i 

2W = 
� 

Wi 
i 



Random walk on graph


We call a random walk the Markov chain in


which the states are the nodes of the graph


Wi,j
pi,j = 

Wi


Wi
πi = 
2W 

Check: 
�

i πi = 1 and 

� 

i 
πipi,j = 

� 

i 

Wi 

2W 

Wi,j 

Wi 

= 
� Wi,j 

i 2W 

= 
Wj 

2W 
= πj 



Random walk on graph


H(X2 X1)


= − 
� 

π

|
i 
� 

pi,j log(pi,j)

i j


= − 
� Wi � Wi,j 

log 

�
Wi,j 

�


i 2W j Wi Wi


= − 
� Wi,j 

log 

�
Wi,j 

�


2W Wi
i,j


= − 
� Wi,j 

log 

�
Wi,j 

�


2W 2W
i,j 

+ 
� Wi,j 

log 
� 

Wi 
� 

2W 2Wi,j 

= 
Wi,j 

log 

�
Wi,j 

� 

+ 
� Wi log 

� 
Wi 

� 

− 
� 

2W 2W 2W 2Wi,j i 

Entropy rate is difference of two entropies


Note: time reversibility for Markov chain 

that can be represented as random walk 

on undirected weighted graph 



Hidden Markov models


Consider an ALOHA wireless model 

M users sharing the same radio channel to 

transmit packets to a base station 

During each time slot, a packet arrives to 

a user’s queue with probability p, indepen­

dently of the other M− 1 users 

Also, at the beginning of each time slot, if 

a user has at least one packet in its queue, 

it will transmit a packet with probability q, 

independently of all other users 

If two packets collide at the receiver, they 

are not successfully transmitted and remain 

in their respective queues 



�

Hidden Markov models 

Let Xi = (N [1]i, N [2]i, . . . , N [M] ) denote 

the random vector at time i where N [m]i is 

the number of packets that are in user m’s 

queue at time i. Xi is a Markov chain. 

Consider the random vector Yi = (Z[1], Z[2], . . . , Z[M]) 

where Z[m]i = 1 if user m transmits during 

time slot i and Z[i] = 0 otherwise 

Is Yi Markov? 



Hidden Markov processes


Let Xi, X2, . . . be a stationary Markov chain 

and let Yi = φ(Xi) be a process, each term 

of which is a function of the corresponding 

state in the Markov chain 

Y1, Y2, . . . form a hidden Markov chain, which 

is not always a Markov chain, but is still 

stationary 

What is its entropy rate? 



� 

Hidden Markov processes 

We suspect that the effect of initial infor­

mation should decay 

H(Yn|Y n−1)−H(Yn|Y n−1, X1) = I(X1; Yn|Y n−1) 

should go to 0 

Indeed, 

n

lim I (X1; Y
n) = lim 

� 
I 

�
X1; Y

i Y i−1
� 

n→∞ n→∞ 
i=1 

|

= 
∞

I 
�
X1; Y

i |Y i−1
� 

i=1 

since we have an infinite sum in which the 

terms are non-negative and which is upper 

bounded by H(X1), the terms must tend 

to 0 
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