
LECTURE 5


Last time: 

Stochastic processes • 

Markov chains • 

Entropy rate • 

Random walks on graphs
• 

Hidden Markov models
• 

Lecture outline 

Codes • 

Kraft inequality • 

optimal codes. • 

Reading: Scts. 5.1-5.4. 



Codes for random variables


Notation: the concatenation of two strings 

x and y is denoted by xy. The set of all 

strings over a finite alphabet D is denoted 

by D∗. W.l.o.g. assume D = 0, 1, . . . , D − 1 

where D = |D ∗ |. 

Definition: a source code for a random 

variable X is a map 

C : X �→ D∗ 

x C(x)→ 

where C(x) is the codeword associated with 

x 

l(x) is the length of C(x) 

The length of a code C is 

L(C) = EX[l(X)] 



Codes for random variables


C is nonsingular if every element of X maps 

onto a different element of D∗ 

The extension of a code C : X �→ D∗ is the 

code 

C∗ : X∗ �→ D∗ 

xn C∗(xn) = C(x1)C(x2) . . . C(xn)→ 

A code is uniquely decodable if its extension 

is nonsingular 

A code is instantaneous (or prefix code) iff 

no codeword of C is a prefix of any other 

codeword C 

Visually: construct a tree whose leaves are 

codewords 



Kraft inequality


Any instantaneous code C with code lengths 

l1, l2, . . . , lm must satisfy 

m� 
D−li ≤ 1 

i=1 

Conversely, given lengths l1, l2, . . . , lm that 

satisfy the above inequality, there exists an 

instantaneous code with these codeword 

lengths 

Proof: construct a D-ary tree T (code­

words are leaves) 

Extend tree T to D-ary tree T � with depth 

lMAX, total number of leaves is DlMAX 



Kraft inequality


Each leaf of T � is a descendant of at most 

one leaf of T 

Leaf in T corresponding to codeword C(i) 

has exactly DlMAX −li descendants in T � (1 

if li = lMAX) 

Summing over all leaves of T gives 

m� 
DlMAX −li ≤ DlMAX 

i=1 
m� 

D−li ⇒ 
i=1 

≤ 1 



Kraft inequality


Given lengths l1, l2, . . . , lm satisfying Kraft’s 

inequality, we can construct a tree by as­

signing C(i) to first available node at depth 

C(i) 



Extended Kraft inequality


Kraft inequality holds for all countably in­

finite set of codewords 

Let n(y1y2 . . . yli) be the real 
�l

j
i 
=1 yjD

−j 

associated with the ith codeword 

Why are the n(y1y2 . . . yli)s for different code-

words different? 

By the same reasoning, all intervals 
� 

1 
� 

n(y1y2 . . . yli), n(y1y2 . . . yli) + 
Dli 

are disjoint 

since these intervals are all in (0, 1), the 

sum of their lengths is ≤ 1 

For converse, reorder indices in increasing 

order and assign intervals as we walk along 

the unit interval 



Optimal codes


Optimal code is defined as code with small­

est possible C(L) with respect to PX 

Optimization: 

minimize 
�

x∈X PX(x)l(x) 

subject to 
�

x∈X D
−l(x) ≤ 1 

and l(x)s are integers 



Optimal codes


Let us relax the second constraint and re­

place the first with equality to obtain a 

lower bound 

J = 
�

x∈X PX(x)l(x) + λ 
��

x∈X D
−l(x) − 1

� 

∂J use Lagrange multipliers and set 
∂l(i) = 0 

PX(i) − λ log(D)D−l(i) = 0 

equivalently D−l(i) = PX (i) 
λ log(D) 

using Kraft inequality (now relaxed to equal­

ity) yields 

1 = 
� 

D−l(x) = 
� PX(i) 

i∈X i∈X λ log(D) 

so λ = 1 , yielding l(i) = − logD(PX(i))log(D)



Optimal codes


Thus a bound on the optimal code length 

is 

PX(i) logD(PX(i)) = HD(X)− 
�


i∈X


This is lower bound, equality holds iff PX 

is D-adic, PX(i) = D−l(i) for integer l(i) 



Optimal codes


The optimal codelength L∗ satisfies 

HD(X) ≤ L∗ ≤ HD(X) + 1 

Upper bound: take l(i) = �logD(PX(i))� 
� 

D�− logD(PX (i))� ≤ 
� 

PX(i) = 1 
i∈X 

thus these lengths satisfy Kraft’s inequality 

and we can create a prefix-free code with 

these lengths 

L∗ ≤	
� 

PX(i)�− logD(PX(i))�

i∈X


≤	
� 

PX(i)(− logD(PX(i)) + 1) 
i∈X 

= HD(X) + 1 

We call these types of codes Shannon codes 



Optimal codes 

Is this as tight as it gets?


Consider coding several symbols together


C : X n �→ D∗ 

expected codeword length is 
�

xn∈X n PXn(xn)l(xn) 

optimum satisfies 

HD(Xn) ≤ L∗ ≤ HD(Xn) + 1 

per symbol codeword length is 

HD(Xn) L∗ HD(Xn) + 1 
n ≤ n ≤ n n 
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