LECTURE 5

Last time:
e Stochastic processes
e Markov chains
e Entropy rate
e Random walks on graphs

e Hidden Markov models

Lecture outline
e Codes
e Kraft inequality

e Optimal codes.

Reading: Scts. 5.1-5.4.



Codes for random variables

Notation: the concatenation of two strings
z and y is denoted by zy. The set of all
strings over a finite alphabet D is denoted
by D*. W.l.o.g. assume D=0,1,...,D -1
where D = |D x |.

Definition: a source code for a random
variable X is a map

C: Xw—D"
x — C(x)

where C'(x) is the codeword associated with

T

[(x) is the length of C(x)

The length of a code C'is

L(C) = Ex[l(X)]



Codes for random variables

C is nonsingular if every element of X maps
onto a different element of D*

The extension of a code C : X — D* is the
code

C* X* +— D*
z" — C*(2") = C(x1)C(x2) ... C(zn)

A code is uniquely decodable if its extension
IS nonsingular

A code is instantaneous (or prefix code) iff
no codeword of C is a prefix of any other
codeword C

Visually: construct a tree whose leaves are
codewords



Kraft inequality

Any instantaneous code C with code lengths

l1,lo,...,l;m must satisfy
m
Y Dli<
i=1
Conversely, given lengths [1,[0o,...,l;n that

satisfy the above inequality, there exists an
instantaneous code with these codeword
lengths

Proof: construct a D-ary tree T (code-
words are leaves)

Extend tree T to D-ary tree T with depth
IaAx, total number of leaves is D!mMAx



Kraft inequality

Each leaf of T/ is a descendant of at most
one leaf of T

Leaf in T corresponding to codeword C(7)
has exactly D'mMax—li descendants in T’ (1

it L, =lprax)

Summing over all leaves of 1" gives
™m
3 Dimax—li « plamax
i=1
m
= Y Dli<1
i=1



Kraft inequality

Given lengths lq,1o,...,ln satisfying Kraft's
inequality, we can construct a tree by as-
signing C'(7) to first available node at depth

C()



Extended Kraft inequality

Kraft inequality holds for all countably in-
finite set of codewords

Let n(yiyz...y;,) be the real Z?zl ij_j
associated with the it" codeword

Why are the n(y1y> . ..y, )s for different code-
words different?

By the same reasoning, all intervals

1
(n(yl?JQ coy)sn(yiy2 - y) + E)

are disjoint

since these intervals are all in (0, 1), the
sum of their lengths is <1

For converse, reorder indices in increasing
order and assign intervals as we walk along
the unit interval



Optimal codes

Optimal code is defined as code with small-
est possible C(L) with respect to Py

Optimization:
minimize > ,.cy Px(z)l(z)
subject to Y,y DU <1

and [(x)s are integers



Optimal codes

Let us relax the second constraint and re-
place the first with equality to obtain a
lower bound

J=gex Px(@)l(z) + A (er)( D) 1)

use Lagrange multipliers and set m() =0

Px (i) — Mog(D)D~ ') =0

Px (i)
— Alog(D)

equivalently D=1 =

using Kraft inequality (now relaxed to equal-
ity) vields

_ —i(z) _ Px(7)
1 g;(D z;( Alog(D)

SO\ = @ yielding 1(:) = —logp(Px (4))



Optimal codes

Thus a bound on the optimal code length
IS

— ) Px(i)logp(Px(i)) = Hp(X)
ieX

This is lower bound, equality holds iff Py
is D-adic, Py (i) = D' for integer 1(3)



Optimal codes

The optimal codelength L* satisfies

Hp(X) < L* < Hp(X)+1

Upper bound: take I(i) = [logp(Px(7))]

3 pI—109p(Px(1))] < S Px(i) =1
1€X

thus these lengths satisfy Kraft's inequality
and we can create a prefix-free code with
these lengths

L* < > Px(i)[—logp(Px(i))]
icx

< ) Px(i)(—logp(Px(i)) +1)
icx

= Hp(X)+1

We call these types of codes Shannon codes



Optimal codes
Is this as tight as it gets?
Consider coding several symbols together
C: X" — D
expected codeword length is 3" ne yn Pxn(z™)I(z")
optimum satisfies
Hp(X™) < L*< Hp(X") +1

per symbol codeword length is

Hp(X™) ~ L* - Hp(X") 41

n — n — n
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