
LECTURE 13 

Last time: 

Strong coding theorem • 

Revisiting channel and codes
• 

Bound on probability of error
• 

Error exponent • 

Lecture outline 

Fano’s Lemma revisited • 

Fano’s inequality for codewords • 

Converse to the coding theorem • 

Reading: Sct. 8.9. 
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Fano’s lemma


Suppose we have r.v.s X and Y , Fano’s 
lemma bounds the error we expect when 
estimating X from Y 

We generate an estimator of X that is � =X 
g(Y ). 

Probability of error Pe = Pr( � = X)X 

Indicator function for error E which is 0 
when X = X and 1 otherwise. Thus, Pe = 
P (E = 1)


Fano’s lemma:


H(E) + Pe log(|X | − 1) ≥ H(X|Y )


We now need to consider the case where

we are dealing with codewords 

Want to show that vanishingly small prob­
ability of error is not possible if the rate is 
above capacity 
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Fano’s inequality for code words


An error occurs when the decoder makes 

the wrong decision in selecting the message 

that was transmitted 

Let M ∈ {1, 2, . . . , 2nR} be the transmitted 

message and let �M be the estimate of the 

received message from Y n 

M is uniformly distributed in {1, 2, . . . , 2nR}
and consecutive message transmissions are 

IID (thus, we do not make use of a number 

of messages, but consider a single message 

transmission) 

The probability of error for a codebook for 

transmission of M is Pe,M = P (M = M) = 

EY n[P (M = M Y n)] 

Consider an indicator variable E = 1 when 

an error occurs and E = 0 otherwise 
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Fano’s inequality for code words 

H(E, M Y )|
= H(M Y ) + H(E M, Y )
| |

= H(M Y )|
= H(E Y ) + H(M E, Y )| |

≤ 1 + H(M |E, Y ) 

Let us consider upper bounding the RHS 

H(M E, Y )|
we are not averaging over codebooks 
as for the coding theorem, 
but are considering a specific codebook 

= H(X E, Y )|
= EM,Y [P (M = M Y )]H(X E = 1, Y ) 
+ = M Y )])(1 − EM,Y [P (M � �|


H(X E = 0, Y )
|
= PeH(X E = 1, Y )|
≤ PeH(X|E = 1) 
≤ Pe log(|M| − 1) 



Fano’s inequality for code words


Given the definition of rate, |M| = 2nR, so 

H(M |E, Y ) ≤ PenR + 1 

Hence 

H(M Y )|
≤ PenR 

For a given codebook, M determines X, so 

H(X|Y ) = H(M |Y ) ≤ 1 + PenR 

for a DMC with a given codebook and uni­

formly distributed input messages 



From Fano’s inequality for code words


to the coding theorem converse


We now want to relate this to mutual in­

formation and to capacity 

Strategy: 

- will need to have mutual information ex­

pressed as H(M) − H(M |Y ) 

- rate will need to come in play - try the fact 

that H(M) = nR for uniformly distributed 

messages 

- will need capacity to come into play. We 

remember that combining the chain rule 

for entropies and the fact that condition­

ing reduces entropy yields the fact that for 

a DMC I(Xn; Y n) ≤ nC 



Converse to the channel coding

theorem


Consider some sequence of codebooks (2nR, n), 
indexed by n, such that the maximum prob­

ability of error over each codebook goes to 
0 as n goes to ∞ 

Assume (we’ll revisit this later) that the 
message M is drawn with uniform PMF 
from {1, 2, . . . , 2nR} 

Then nR = H(M) 

Also 

H(M) = H(M Y ) + I(M ; Y )
|

= H(M |Y ) + H(Y ) − H(Y |M) 

= H(M |Y ) + H(Y ) − H(Y |X) 

= H(M Y ) + I(X; Y )|

≤ 1 + PenR + nC 

Hence R ≤ 1 + PeR + C n 



Converse to the channel coding

theorem


Letting n go to ∞, we obtain that R ≤
C (since the maximum probability of error 
goes to 0 by our assumption) 

Moreover, we obtain the following bound

on error: Pe ≥ 1 − C 

R − 1 
nR 

Note: 

- for R < C, the bound has a negative RHS, 
so does not bound probability of error in a 
way that is inconsistent with forward cod­
ing theorem 

- for R > C, bound becomes 1 − C for large R 
n, but 1 − C 1 is always lower bound RR − 

- as R goes to infinity, bound becomes 1, 
so is tight bound 

- RHS of bound does not vary with n in 
the way we would expect, since the bound 
increases with n 



Revisiting the message distribution


We have assumed that we can select the 

messages to be uniformly distributed 

This is crucial to get H(M) = nR 

Does the converse only work when the mes­

sages are uniformly distributed? 

Let us revisit the consequences of the AEP




Consequences of the AEP: the typical


set


Definition: A� 
(n) is a typical set with respect 

to PX(x) if it is the set of sequences in the 

set of all possible sequences xn n with∈ X
probability: 

2−n(H(X)+�) ≤ PXn (xn) ≤ 2−n(H(X)−�) 

equivalently 

1 
H(X) − � ≤ − 

n 
log(PXn (xn)) ≤ H(X) + � 

We shall use the typical set to describe a 

set with characteristics that belong to the 

majority of elements in that set. 



Consequences of the AEP: the typical


set


Why is it typical? The probability of being 

more than δ away from H(X) goes can be 

arbitrarily close to 0 as n →∞, hence 

Pr(A� 
(n)) ≥ 1 − � 

We can select � to be arbitrarily small, so 

that the distribution of messages is arbi­

trarily close to uniform in the typical set 

The max of the probability of error must 

be bounded away from 0 in the typical set 

for the max of the probability of error to 

be bounded away from 0 

The probability of error is dominated by the


probability of the typical set as we let � > 0




MIT OpenCourseWare
http://ocw.mit.edu 

6.441 Information Theory 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

