LECTURE 13

Last time:
e Strong coding theorem
e Revisiting channel and codes
e Bound on probability of error

e Error exponent

Lecture outline
e Fano’'s Lemma revisited
e Fano’s inequality for codewords

e Converse to the coding theorem

Reading: Sct. 8.9.



Fano’s lemma

Suppose we have r.v.s X and Y, Fano’s
lemma bounds the error we expect when
estimating X from Y

We generate an estimator of X that is X =
g(Y).

Probability of error P. = Pr(X # X)

Indicator function for error E which is O
when X = X and 1 otherwise. Thus, P, =
P(E=1)

Fano’'s lemma:
H(E) + Pelog(|X| — 1) > H(X[Y)

We now need to consider the case where
we are dealing with codewords

Want to show that vanishingly small prob-
ability of error is not possible if the rate is
above capacity



Fano’'s inequality for code words

An error occurs when the decoder makes
the wrong decision in selecting the message
that was transmitted

Let M € {1,2,...,2"} be the transmitted
message and let M be the estimate of the
received message from YY"

M is uniformly distributed in {1,2,...,2"}
and consecutive message transmissions are
IID (thus, we do not make use of a number
of messages, but consider a single message
transmission)

The probability of error for a codebook for
transmission of Mis P,y = P(M # M) =
Eyn[P(M # M|Y"™)]

Consider an indicator variable E = 1 when
an error occurs and E = 0 otherwise



Fano’'s inequality for code words

H(E, M|X)

H(M|Y) + H(E|M,Y)
H(M|X)

H(E[Y) + H(ME,Y)
1+ H(M|E,Y)

N

et us consider upper bounding the RHS

H(M|E,Y)
we are not averaging over codebooks
as for the coding theorem,
but are considering a specific codebook
H(X|E,Y)
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Fano’'s inequality for code words

Given the definition of rate, |M| = 2" so

H(M|E,Y) < PenR + 1

Hence

For a given codebook, M determines X, soO
H(X|Y) = H(M|Y) <1+ PenR

for a DMC with a given codebook and uni-
formly distributed input messages



From Fano’s inequality for code words
to the coding theorem converse

We now want to relate this to mutual in-
formation and to capacity

Strategy:

- will need to have mutual information ex-
pressed as H(M) — H(M|Y)

- rate will need to come in play - try the fact
that H(M) = nR for uniformly distributed
messages

- will need capacity to come into play. We
remember that combining the chain rule
for entropies and the fact that condition-
ing reduces entropy vields the fact that for
a DMC I(X™,Y"™) <nC



Converse to the channel coding
theorem

Consider some sequence of codebooks (2" n),
indexed by n, such that the maximum prob-
ability of error over each codebook goes to

0O as n goes to oo

Assume (we'll revisit this later) that the
message M is drawn with uniform PMF
from {1,2,...,2n1}

Then nR = H(M)

AlsoO

HM)=HM|Y)+I(M;Y)
HM|Y)+HY)-HY|M)
HM|Y)+ H(Y) - H(Y|X)
HM|)Y)+ I(X;Y)

< 1+ P.nR+nC

Hence Rg%—l—PeR—I—C



Converse to the channel coding
theorem

Letting n go to oo, we obtain that R <
C (since the maximum probability of error
goes to 0 by our assumption)

Moreover, we obtain the following bound

. C 1
on error: Pezl—ﬁ—m

Note:

- for R < C', the bound has a negative RHS,
so does not bound probability of error in a
way that is inconsistent with forward cod-
ing theorem

- for R > C', bound becomes 1 —% for large

n, but 1 — % — & is always lower bound

- as R goes to infinity, bound becomes 1,
so is tight bound

- RHS of bound does not vary with n in
the way we would expect, since the bound
increases with n



Revisiting the message distribution

We have assumed that we can select the
messages to be uniformly distributed

This is crucial to get H(M) = nR

Does the converse only work when the mes-
sages are uniformly distributed?

Let us revisit the consequences of the AEP



Consequences of the AEP: the typical
set

Definition: A§”> is a typical set with respect
to Px(x) if it is the set of sequences in the
set of all possible sequences z"™ € X™ with

probability:
o—n(H(X)+e) < Pyn () < >—n(H(X)—e)

equivalently

H(X) — e < ——10g(Pyn (a") < H(X) +e

We shall use the typical set to describe a
set with characteristics that belong to the
majority of elements in that set.



Consequences of the AEP: the typical
set

Why is it typical? The probability of being
more than 6 away from H(X) goes can be
arbitrarily close to O as n — oo, hence

Pr(Agn)) >1—c

We can select € to be arbitrarily small, so
that the distribution of messages is arbi-
trarily close to uniform in the typical set

The max of the probability of error must
be bounded away from O in the typical set
for the max of the probability of error to
be bounded away from O

T he probability of error is dominated by the
probability of the typical set as we let ¢ > 0O
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