
LECTURE 16


Last time:


Data compression • 

Coding theorem • 

Joint source and channel coding theorem • 

Converse • 

Robustness • 

Brain teaser • 

Lecture outline


Differential entropy • 

Entropy rate and Burg’s theorem • 

AEP • 

Reading: Chapters 9, 11. 



Continuous random variables


We consider continuous random variables 
with probability density functions (pdfs) 

X has pdf fX(x) 

Cumulative distribution function (CDF) 

FX(x) = P (X ≤ x) = 
� x fX(t)dt∞ 

pdfs are not probabilities and may be greater 
than 1 

in particular for a discrete Z 

PαZ(αz) = PZ(z) 

but for continuous X 

P (αX ≤ x) = P (X ≤ x) = FX 

�
x 

� � 
α
x 

fX(t)dtα α −∞ 

so fαX(x) = dFX (x) = 1fX 

�
x 

� 

dx α α 



Continuous random variables


In general, for Y = g(X) 

Get CDF of Y : FY (y) = P(Y ≤ y) Differ­

entiate to get 

dFYfY (y) = (y)
dy 

X: uniform on [0,2] 

Find pdf of Y = X3 

Solution: 

FY (y) = P(Y ≤ y) = P(X3 ≤ y) (1) 

= P(X ≤ y 1/3) = 
1 

y 1/3 (2)
2

dFY 1 
fY (y) = 

dy 
(y) = 

6y2/3 



Differential entropy 

Differential entropy: 
� +∞ 

� 
1 

� 

h(X) = fX(x) ln dx (3) 
−∞ fX(x) 

All definitions follow as before replacing PX 

with fX and summation with integration 

I(X; Y )

� +∞ � +∞ 

� 
fX,Y (x, y) 

�


= fX,Y (x, y) ln dxdy 
−∞ −∞ fX(x)fY (y)


= D 
�
fX,Y (x, y)||fX(x)fY (y)

�


= h(Y ) − h(Y |X)


= h(X) − h(X|Y )


Joint entropy is defined as 

h(Xn) = − 
� 

fXn(xn)ln 
�
fXn(xn)

� 
dx1 . . . dxn 



Differential entropy 

The chain rules still hold: 

h(X, Y ) = h(X)+ h(Y X) = h(Y )+ h(X Y )| |

I((X, Y ); Z) = I(X; Z) + I(Y ; Z Y )|

K-L distance D(fX(x)||fY (y)) = 
� 

fX(x) ln 
�

fX (x)
� 

fY (y) 
still remains non-negative in all cases 

Conditioning still reduces entropy, because 
differential entropy is concave in the input 
(Jensen’s inequality) 

Let f(x) = −x ln(x) then 

1 
f �(x) = −x

x 
− ln(x) 

= − ln(x) − 1 

and 
1 

f”(x) = − < 0 
x 

for x > 0. 

Hence I(X; Y ) = h(Y ) − h(Y |X) ≥ 0 



Differential entropy 

H(X) ≥ 0 always 

and H(X) = 0 for X a constant 

Let us consider h(X) for X constant 

For X constant fX(x) = δ(x) 

� +∞ 
� 

1 
� 

h(X) = fX(x) ln dx (4) 
−∞ fX(x) 

h(X) → −∞ 

Differential entropy is not always positive 

See 9.3 for discussion of relation between 
discrete and differential entropy 

Entropy under a transformation: 

h(X + c) = h(X) 

h(αX) = h(X) + ln ( α| |) 



Maximizing entropy 

For H(Z), the uniform distribution maxi­

mized entropy, yielding log(|Z|) 

The only constraint we had then was that 

the inputs be selected from the set Z 

We now seek a fX(x) that maximizes h(X) 

subject to some set of constraints 

fX(x) ≥ 0 

� 
fX(x)dx = 1 

� 
fX(x)ri(x)dx = αi where {(r1, α1), . . . , (rm, αm)}

is a set of constraints on X 

λ0−1+
�m 

Let us consider fX(x) = e i=1 λiri(x). 

Let us show it achieves a maximum entropy 



�


�


�

�


�


Maximizing entropy


Consider some other random variable Y with 
fy(y) pdf that satisfies the conditions but 
is not of the above form 

h(Y ) = −
 fY (x) ln(fY (x))dx 
�

fY (x) 
� 

fX(x) 
fY (x) ln
 fX(x) dx
= − 

�
( ) ln( ( ))f f dxx xY X−D(fY ||fX) − 

fY (x) ln(fX(x))dx 

=


≤ −

⎛
⎝
λ0 − 1 +


⎞
⎠


m� 

m� 

i=1 
fY (x)
 λiri(x)
 dx
= − 

⎛
⎝
λ0 − 1 +


⎞
⎠
fX(x)
 λiri(x)
 dx
= − 

i=1


= h(X) 

Special case: for a given variance, a Gaus­

sian distribution maximizes entropy 

For X ∼ N(0, σ2), h(X) = 1 ln(2πeσ2)2 



Entropy rate and Burg’s theorem 

The differential entropy rate of a stochastic 
process {Xi} is defined to be limn→∞ 

h(Xn) 
n 

if it exists 

In the case of a stationary process, we can 
show that the differential entropy rate is 
limn→∞ h(Xn|Xn−1) 

The maximum entropy rate stochastic pro­
cess {Xi} satisfying the constraints E 

�
XiXi+k 

� 
= 

αk, k = 0, 1, . . . , p, ∀i is the pth order Gauss-
Markov process of the form 

p

Xi = − 
� 

akXi−k + Ξi 
k=1 

where the Ξis are IID ∼ N(0, σ2), indepen­
dent of past Xs and a1, a2, . . . , ap, σ2 are 
chosen to satisfy the constraints 

In particular, let X1, . . . , Xn satisfy the con­
straints and let Z1, . . . , Zn be a Gaussian 
process with the same covariance matrix as 
X1, . . . , Xn. The entropy of Zn is at least 
as great as that of Xn . 



Entropy rate and Burg’s theorem


Facts about Gaussians: 

- we can always find a Gaussian with any 
arbitrary autocorrelation function 

- for two jointly Gaussian random variables 
X and Y with an arbitrary covariance, we 
can always express Y = AX + Z for some 
matrix A and Z independent of X 

- if Y and X are jointly Gaussian random 
variables and Y = X + Z then Z must also 
be 

- a Gaussian random vector Xn has pdf 

1 
fXn(xn) = �√

2π|ΛXn|
�n 

e
−1(xn−µXn)T Λ−1 (xn−µXn)2 Xn

where Λ and µ denote autocovariance and 
mean, respectively 

- The entropy is h(Xn) = 12 ln 
�
(2πe)n|ΛXn|

� 



Entropy rate and Burg’s theorem 

The constraints E 
�
XiXi+k 

� 
= αk, k = 0, 1, . . . , p, 

∀i can be viewed as an autocorrelation con­
straint 

By selecting the ais according to the Yule-
Walker equations, that give p+1 equations 
ion p + 1 unknowns 

R(0) = − 
�p

k=1 akR(−k) + σ2 

R(l) = − 
�p

k=1 akR(l − k) 

(recall that R(k) = R(−k)) we can solve for 
a1, a2, . . . , ap, σ2 

What is the entropy rate? 
n


h(Xn) = 
� 

h(Xi|Xi−1)

i=1

n

= 
� 

h(Xi Xi−1)| i−p 
i=1 
n

= 
� 

h(Ξi) 
i=1 



AEP 

WLLN still holds:


− 1 ln 
�
fXn(xn)

� 
→ −E[ln(fX(x))] = h(X)
n 

in probability for Xis IID 

Define V ol(A) = 
�
A dx1 . . . dxn 

Define the typical set A(
�
n) as: 

�
(x1, . . . , xn)s.t.| − 

1 
ln 

�
fXn(xn)

� 
− h(X)| ≤ �

� 

n 

By the WLLN, P (A� 
(n)) > 1 − � for n large 

enough 



� 

� 

AEP 

1 = fXn(xn)dx1 . . . dxn 

1 ≥ 
� 

(n) e
−n(h(X)+�)dx1 . . . dxn 

A� 

en(h(X)+�) ≥ V ol(A� 
(n)) 

For n large enough, P (A(
�
n)) > 1 − � so 

1 − � ≤ 
� 

(n) fXn(xn)dx1 . . . dxn 
A� 

1 − � ≤ 
� 

A
(n) e

−n(h(X)−�)dx1 . . . dxn 

1 − � ≤ V ol(A(
�
n))e−n(h(X)−�) 
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