LECTURE 16

Last time:
e Data compression
e Coding theorem
e Joint source and channel coding theorem
e Converse
e RoODbustness

e Brain teaser

Lecture outline
e Differential entropy
e Entropy rate and Burg’'s theorem

e AEP

Reading: Chapters 9, 11.



Continuous random variables

We consider continuous random variables
with probability density functions (pdfs)

X has pdf fx(x)
Cumulative distribution function (CDF)
Fx(z) = P(X <z) = [ fx(t)dt

pdfs are not probabilities and may be greater
than 1

in particular for a discrete Z

Poz(az) = Pz(z)

but for continuous X

P(aX <) =P(X < %) = Fy (£) [2 fx ()t

50 fax(z) = ¥ = 1p, (2)



Continuous random variables
In general, for Y = g(X)

Get CDF of Y: Fy(y) = P(Y < y) Differ-
entiate to get

d
fy (y) = FY(y)

X: uniform on [0,2]
Find pdf of Y = X3
Solution:

Fy(y) = P(Y<y)=P(X><y) (1)

= P(X <yt =y ()
fy (y) = dFY(y) !

6y2/3



Differential entropy

Differential entropy:

00 = [T ey

fX(fE)> o 3)

All definitions follow as before replacing Py
with fx and summation with integration

I(X;Y)
_ [T [T N fxy(z,y) N
= [ [ @ <fx(w)fy(y)>d W
D (fx,y (@l fx@)fy @)
h(Y) = h(Y|X)
h(X) — h(X|Y)

Joint entropy is defined as

(X" = — [ fxn(@®)in (fxn(z")) doy ... dan



Differential entropy
The chain rules still hold:
h(X,Y) = h(X)+h(Y]X) = h(Y)+h(X]Y)

I((X,Y): Z2) =1(X;2Z)+ I(Y; Z|Y)

K-L distance D(fx (@)lIfy (1)) = J fx (@) In (5
still remains non-negative in all cases

)

Conditioning still reduces entropy, because
differential entropy is concave in the input
(Jensen’s inequality)

Let f(x) = —zIn(x) then

F@) = - —In(z)
€T
= —In(x) -1
and
1
f'(x)=——<0
€T
for x > 0.

Hence I(X;Y)=h(Y)—h(Y|X) >0



Differential entropy
H(X) > 0 always
and H(X) = 0 for X a constant
Let us consider Ah(X) for X constant

For X constant fy(z) = 6(x)

rx) = [ fxGyin ( )dx (4)

fx(x)
h(X) — —o
Differential entropy is not always positive

See 9.3 for discussion of relation between
discrete and differential entropy

Entropy under a transformation:
h(X 4+ c¢) = h(X)

h(aX) = h(X) +in (Jaf)



Maximizing entropy

For H(Z), the uniform distribution maxi-
mized entropy, yielding log(|Z])

The only constraint we had then was that
the inputs be selected from the set Z

We now seek a fy(x) that maximizes h(X)
subject to some set of constraints

fx(x) >0
| fx(z)dz =1

f fX(ﬂ?)?"Z(CB)daj — ai Where {(rla Oé]_), O (Tm7 Oém)}
IS a set of constraints on X

Let us consider fy(z) = ero— 142 =1 Airi(2)
et us show it achieves a maximum entropy



Maximizing entropy

Consider some other random variable Y with
fy(y) pdf that satisfies the conditions but
is not of the above form

h(Y) = = [ fy(@) In(fy (2))da

= — [ fy(@)m (ggfm)) dx

= —DUvlIfx) = [ fr@)In(fx(@))da
< — [ @ In(fx(2))da

= —/fY(fE) (Ao —14 > A¢T¢($)> dx
i=1

o —/fX(w) ()\O —1 —|— Z )\iri(aj)) d:c
1=1
= h(X)

Special case: for a given variance, a Gaus-
sian distribution maximizes entropy

For X ~ N(0,02), h(X) = 5In(2nes?)



Entropy rate and Burg’s theorem

T he differential entropy rate of a stochastgbc
process {X;} is defined to be limy_—co h(% )
if it exists

In the case of a stationary process, we can
show that the differential entropy rate is
liMp—oo A(Xn| X" 1)

The maximum entropy rate stochastic pro-
cess { X;} satisfying the constraints £ [XZ-XH_,{} =

arp, k=0,1,...,p, Viis the pt" order Gauss-
Markov process of the form

p
Xi=— ) apXip+=
k=1
where the =;s are IID ~ N(0, ¢2), indepen-
dent of past Xs and ai,a»,...,ap, 02 are

chosen to satisfy the constraints

In particular, let X+4,..., Xy, satisfy the con-
straints and let Z¢,...,4Z, be a Gaussian
process with the same covariance matrix as
X1,...,Xp. The entropy of Z™ is at least
as great as that of X™".



Entropy rate and Burg’s theorem
Facts about Gaussians:

- we can always find a Gaussian with any
arbitrary autocorrelation function

- for two jointly Gaussian random variables
X and Y with an arbitrary covariance, we
can always express ¥ = AX + Z for some
matrix A and Z independent of X

- if Y and X are jointly Gaussian random
variables and ¥ = X 4+ Z then Z must also
be

- a Gaussian random vector X™ has pdf
1

V2r|Axn])"

fxn(z") =
N (

-1
e—%(z”—ggn)T/\Xn@”—ggn)

where A and pu denote autocovariance and
mean, respectively

- The entropy is h(X") = %In ((27T€)n|/\in|)



Entropy rate and Burg’s theorem
The constraints E [XiXi_l_k} =oap, k=0,1,...,p,
Vi can be viewed as an autocorrelation con-
straint

By selecting the a;s according to the Yule-
Walker equations, that give p+ 1 equations
ion p 4+ 1 unknowns

R(0) = — S _; axR(—k) + 02
R(l) = — Y0 _; ayR(l — k)

(recall that R(k) = R(—k)) we can solve for
CL]_,CIQ,...,ap,O'Q

What is the entropy rate?

n .
M(X™ = 3 h(X;xh
=1
- 1—1
— Zh(XﬂXq;_p)
=1

— 3 A(E)
1=1



AEP

WLLN still holds:

—Lin (fxn(@™)) = —Eln(fx(2))] = h(X)
in probability for X;s IID

Define Vol(A) = [4dx1 ...dxn

Define the typical set AE”) as:

{(wl, ..., Tn)S.T.] —%In (fgn(zn)) —h(X)| < e}

By the WLLN, P(A™) > 1 — ¢ for n large
enough



AEP

1> /AE”) e_n(h(X)+€)d:r;1 ...dxn

en(h(X)‘I'ﬁ) 2 Vol(Agn))

For n large enough, P(Agn)) >1—¢€ SO0

1 —e<

1l —€e<

) e_n(h(X)_e)dxl ...dxn

A
1—€e< Vol(Agn))e_n(h(X)_e)
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