
LECTURE 19


Last time:


Gaussian channels: parallel • 

colored noise • 

inter-symbol interference • 

general case: multiple inputs and out­• 

puts 

Lecture outline


Gaussian channels with feedback • 

Upper bound to benefit of capacity • 

Reading: Section 10.6. 



Gaussian channels with feedback


In the case of a DMC that there is no ben­

efit to feedback 

The same arguments extend to the case 

where we have continuous inputs and out­

puts 

What happens in the case when the noise 

is not white? We can garner information 

about future noise from past noise 

Yi = Xi + Ni 

but now the Xi is also a function of the 

past Y s, within an energy per codeword 

constraint 



Gaussian channels with feedback


A code is now a mapping xi(M, Y i−1) from 
the messages in M = {1, 2, . . . , 2nR} and 
from Y i−1 onto reals under the constraint 
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∀m ∈ {1, 2, . . . , 2nR}


How do we define capacity? Let’s try:
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moreover 

I (Xn; Y n) 

= h(Y n) − h(Y n |Xn) 

= h(Xn) − h(Xn |Y n) 

but then select (X1, X2, . . . , Xn) = (0, N1, . . . , Nn−1) 

the mutual information blows up! 
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Gaussian channels with feedback 

Let’s try: 
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Note: in the case of no feedback, then M 
and Xn are equivalent 
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= h(Y n) − h(Nn)




Gaussian channels with feedback


How do we maximize I (M ; Y n), or equiva­
lently h(Y n) − h(Nn) 

Since a Gaussian distribution maximizes en­
tropy, 

1h(Y n) ≤ 2 ln 
�
(2πe)n|ΛXn+Nn| 

� 

we can always achieve this by taking the

Xs to be jointly Gaussian with the past Y s


Xi = 
�i−1 

j=1 αi,jYj + Vi + ci 

where Vi is mutually independent from the 
Yjs, for 1 ≤ j ≤ i − 1 and any constant 
ci will leave the autocorrelation matrix un­
changed. Note that the past Xs are a con­
stant, so in particular we can select ci = 
− 

�i−1 
j=1 αi,jxj 

so 

= 
�i−1Xi j=1 αi,jNj + Vi 



Gaussian channels with feedback


Do we have coding theorems? 

Joint typicality between input and output 

hold as a means of decoding 

WLLN of large numbers holds 

Sparsity argument for having multiple iden­

tical mappings holds 

Converse: Fano’s lemma still holds, with 

M being directly involved in the bound 

Question: how does this compare to the 

non-feedback capacity? 



Gaussian channels with feedback 

Non-feedback capacity is simply Gaussian 
colored noise channel: 

Cn = max1trace
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ΛXn
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1I (Xn; Y n)
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n ≤P n 

In this case 

I (Xn; Y n) 
= h(Y n) − h(Y n |Xn) 

= h(Xn + Nn) − h(Nn) 

which is maximized by taking Xn to be 
Gaussian colored noise determined using water-
filling 

so Cn = max1 
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From our previous discussion, 
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we can find this if we determine the αi,js, 
but this may not be easy 



An upper bound


Fact 1:


ΛXn+Nn + ΛXn−Nn = 2 
�
ΛXn + ΛNn

�


Look at elements in the diagonal and the


off-diagonals


Fact 2:


If C = A − B is symmetric positive definite,


when A and B are also symmetric positive 

definite, then A B| | ≥ | | 

Consider V ∼ N (0, C), W ∼ N (0, B) inde­

pendent random variables 

Let S = V + W , then S ∼ N (0, A) 

h(S) ≥ h(S|V ) = h(W |V ) = h(W ) so |A| ≥ 

|B| 



An upper bound


From fact 1:


2(ΛXn + ΛNn) − ΛXn+Nn = ΛXn−Nn


hence 2(ΛXn + ΛNn) − ΛXn+Nn is positive 

definite 

From fact 2: 

|ΛXn+Nn| ≤ |2(ΛXn + ΛNn)| = 2n|(ΛXn + 

ΛNn)| 

Hence 
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Writing on dirty paper


Suppose that the sender knows the degra­

dation d exactly, what should he do? What 

should the receiver do? 

May not always be able to subtract d at the 

sender. 

Example: we try to send S uniformly dis­

tributed over [−1, 1] 

select X such that (X + d) mod 2 = S 

X = S − d mod 2 and the receiver takes 

mod 2 
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