
LECTURE 23 

Last time: 

Finite-state channels • 

Lower capacity and upper capacities • 

Indecomposable channels • 

Markov channels • 

Lecture outline 

Spreading over fading channels • 

Channel model • 

Upper bound to capacity • 

Interpretation • 



Spreading over fading channels 

Channel decorrelates in time T 

Channel decorrelates in frequency W 

Recall Markov channels: difficulty arises when 

we do not know the channel 

Gilbert-Eliot channel: hypothesis testing for 

what channel state is 

Consider several channels in parallel in fre­

quency (recall that if channels are known, 

we can water-fill) 



Channel model 

Block fading in bandwidth and in time 

Over each coherence bandwidth of size W ,

the channel experiences Rayleigh flat fading


All the channels over distinct coherence band­

widths are independent, yielding a block-

fading model in frequency 

We transmit over µ coherence bandwidths 

The energy of the propagation coefficient 
F [i]j over coherence bandwidth i at sam­

pled time j is σF 

For input X[i]j at sample time j (we sample 
at the Nyquist rate W ), the corresponding 
output is Y [i]j = F [i]jX[i]j + N [i]j, where 
the N [i]js are samples of WGN bandlimited 
to a bandwidth of W , with energy normal­

ized to 1 



Channel model 

The time variations are block-fading in na­

ture 

The propagation coefficient of the channel 
remains constant for T symbols (the co­

herence interval), then changes to a value 
independent of previous values 

Thus, F [i](j+1)TW is a constant vector and jT W +1 

the F [i](j+1)TW are mutually independent jT W +1 
for j = 1, 2, . . .. 

Signal constraints: 

For the signals over each coherence band­
• 
width, the second moment is upper bounded 
by E[X2] ≤ E

µ 

The amplitude is upper bounded by γ 
�

E[X2]• E 



Upper bound to capacity 

Capacity is C 
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where the fourth central moment of X[j]i is 

upper bounded by γ 
2 and its average energy 

µ

constraint is Eµ . 

Since we have no sender channel side in­

formation and all the bandwidth slices are 

independent, we may use the fact that mu­

tual information is concave in the input dis­

tribution to determine that selecting all the 

inputs to be IID maximizes the RHS of (1). 



Upper bound to capacity


We first rewrite the mutual information term:
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We may upper bound the first term of (2):
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from concavity of ln and our average energy 
constraint. 



Upper bound to capacity 

We now proceed to minimize the second 
term of (1) 

X[j](i+1)TW 
Y [j](i+1)TWConditioned on iT W +1 , iT W +1 

is Gaussian, since F [j](i+1)TW is GaussianiT W +1 

and N
(i+1)TW Gaussian and independentiT W +1 

of F 
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(4) 

Λ (i+1)TW has kth diagonal term σF 
2 x[k]2+ 

Y [j]iT W +1 

1 and off-diagonal (k, j) term equal to x(k)x(j)σF 
2 , 

conditioned on 

X[j](i+1)TW = x = [x(1), . . . , x(TW )]iT W +1 

The eigenvalues λj of ΛY are 1 for j = 
1 . . . TW − 1 and ||x|| 2 σ2 + 1 for j = TW .F 



Upper bound to capacity


Hence, we may rewrite (3) as 
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+ ln(2πe) (5)
2 

We seek to minimize the RHS of (5) sub­

ject to the second moment constraint hold­

ing with equality and the subject to the 
peak amplitude constraint 

The distribution for X which minimizes the 
RHS of (5) subject to our constraints can 
be found using the concavity of the ln func­

tion 

The distribution is such that the only val­
ues which X can take are 0 and γ with| | 

2 2 

√
µE 

probabilities 1 − E and E
γ2, respectively. 

γ2 



Upper bound to capacity


Thus, we may lower bound (5) by 
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Combining (6), (3) and (1) yields 
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Upper bound to capacity


What is the limit for µ infinite? 

ln(1 + x) � x for small x 

First term goes to 
σ2 

F W E
2 

Second term also goes to 
σ2 

F W E
2 

Graphical interpretation 



Interpretation


Over any channel (slice of of bandwidth of 

size W ), we do not have enough energy to 

measure the channel satisfactorily 

Necessary assumptions: 

energy scales per bandwidth slice over • 

the whole bandwidth 

peak energy per bandwidth slice over • 

the whole bandwidth 



Interpretation


We may relax the assumption of the peak 

bandwidth 

Assume second moment (variance) scales 

as µ 
1 and fourth moment (kurtosis) scales 
1as 2µ

The mutual information goes to 0 as µ → 

∞ 

We may also relax the assumption regard­


ing the channel block-fading in time and


frequency as long as we have decorrelation
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