LECTURE 23
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Upper bound to capacity

Interpretation



Spreading over fading channels
Channel decorrelates in time T
Channel decorrelates in frequency W

Recall Markov channels: difficulty arises when
we do not know the channel

Gilbert-Eliot channel: hypothesis testing for
what channel state is

Consider several channels in parallel in fre-
quency (recall that if channels are known,
we can water-fill)



Channel model
Block fading in bandwidth and in time

Over each coherence bandwidth of size W,
the channel experiences Rayleigh flat fading

All the channels over distinct coherence band-
widths are independent, yielding a block-
fading model in frequency

We transmit over u coherence bandwidths

The energy of the propagation coefficient
F'[i]; over coherence bandwidth i at sam-
pled time j is op

For input X[i]j at sample time j (we sample
at the Nyquist rate W), the corresponding
output is Y[i]; = F[i];X[i]; + N[i];, where
the N[i];s are samples of WGN bandlimited
to a bandwidth of W, with energy normal-
ized to 1



Channel model

The time variations are block-fading in na-
ture

The propagation coefficient of the channel
remains constant for T symbols (the co-
herence interval), then changes to a value
independent of previous values

Thus, E[z]%ﬂ‘}}_)ﬂw is a constant vector and

the E[z]g*ﬁvlfiw are mutually independent
for ,=1,2,....

Signal constraints:

e For the signals over each coherence band-
width, the second moment is upper bounded
by E[X?] <&

e The amplitude is upper bounded by %/ E[X?]



Upper bound to capacity

Capacity is C (W,E,U%,T,,u,'y)

C (W.€,0%, T, p,7) = lim max
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where the fourth central moment of X[j]; is

upper bounded by % and its average energy

constraint is %

Since we have no sender channel side in-
formation and all the bandwidth slices are
independent, we may use the fact that mu-
tual information is concave in the input dis-
tribution to determine that selecting all the
inputs to be IID maximizes the RHS of (1).



Upper bound to capacity

We first rewrite the mutual information term:
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We may upper bound the first term of (2):
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from concavity of In and our average energy
constraint.



Upper bound to capacity

We now proceed to minimize the second
term of (1)

Conditioned on X[j]%_lv_vlfiw, X[ﬂ%'v_vl_)ﬂw

is Gaussian, since E[j],gﬁv}/lflw is Gaussian

and M,EZT_'V}HEW Gaussian and independent

of F
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A, +rnrw has k diagonal term o2z [k]2+
Yilirw i1

1 and off-diagonal (k, 7) term equal to z(k)x(j)o2,
conditioned on

X[ = ¢ = [2(1),...,2(TW)]

The eigenvalues A; of Ay are 1 for j =
1...TW — 1 and ||z||°¢6% + 1 for j = TW.



Upper bound to capacity

Hence, we may rewrite (3) as
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We seek to minimize the RHS of (5) sub-
ject to the second moment constraint hold-
ing with equality and the subject to the
peak amplitude constraint

The distribution for X which minimizes the
RHS of (5) subject to our constraints can
be found using the concavity of the In func-
tion

The distribution is such that the only val-
ues which | X| can take are 0 and — with
| X s

2 2
probabilities 1 — 5—2 and i—z respectively.



Upper bound to capacity

Thus, we may lower bound (5) by
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Combining (6), (3) and (1) yields
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Upper bound to capacity
What is the limit for u infinite?

In(1 4+ z) ~ x for small z

2
: We
First term goes to UFQ
o2WE
Second term also goes to 5

Graphical interpretation



Interpretation

Over any channel (slice of of bandwidth of
size W), we do not have enough energy to
measure the channel satisfactorily

Necessary assumptions:

e energy scales per bandwidth slice over
the whole bandwidth

e peak energy per bandwidth slice over
the whole bandwidth



Interpretation

We may relax the assumption of the peak
bandwidth

Assume second moment (variance) scales

as % and fourth moment (kurtosis) scales

1

as
02

The mutual information goes to O as u —
@

We may also relax the assumption regard-
ing the channel block-fading in time and
frequency as long as we have decorrelation
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