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MIT, Fall 2003 

QUIZ 1 SOLUTIONS


Problem 1: (30 points) Consider a discrete memoryless source with alphabet 
{1, 2, . . . ,M}. Suppose that the symbol probabilities are ordered and satisfy p1 > p2 > 

> pM and also satisfy p1 < pM−1 + pM . Let l1, l2, . . . , lM be the lengths of a prefix-free · · · 
code of minimum expected length for such a source. 

a)	 Show that l1 ≤ l2 ≤ · · · ≤ lM . 

This is almost the same as Lemma 1 in lecture 3. In particular, assume to the contrary 
that pi > pj and li > lj . By interchanging the codeword for i with that for j, the 
difference between the old and new L is 

(pili + pj lj ) − (pilj + pjli) = (pi − pj )(li − lj ) > 0. 

Thus the expected length is reduced, showing that the original code is non-optimum. 

b)	 Show that if the Huffman algorithm is used to generate the above code, then lM ≤ l1+1. 
Hint: the easy way is to look only at the first step of the algorithm and not to use 
induction. 

In the reduced code after the first step of the Huffman algorithm, the codeword for 
the combined symbol of probability pM + pM−1 must have a length l� less than or 
equal to l1 (this follows from part (a) plus the fact that p1 < pM + pM−1). Since 
l� = lM − 1, the result follows. 

c)	 Show that lM ≤ l1 + 1 whether or not the Huffman algorithm is used to generate a 
minimum expected length prefix-free code. 

A minimum-expected-length code must be full, and thus the codeword for letter M 
must have a sibling, say letter j. Since pj ≥ pM−1, we have pj + pM > p1. Let l� be 
the length of the intermediate node that is parent to j and M . Now l� ≤ l1 since 
otherwise the codeword for 1 could be interchanged with this intermediate node for 
a reduction in L. Again lM − 1 ≤ l1. 

d)	 Suppose M = 2k for integer k. Determine l1, . . . , lM . 

First assume l1 = k. Then all codewords have length k or k + 1, but the Kraft in
equality can be satisfied with equality (i.e., the code can be full) only if all codewords 
have length k. If l1 > k, then lj > k for all j and the Kraft inequality can not be 
satisfied with equality. Finally, if l1 < k with lj ≤ k, then the Kraft inequality can 
not be met. Thus all codewords have length k. 

e)	 Suppose 2k < M < 2k+1 for integer k. Determine l1, . . . , lM . 

This is essentially the same as problem 2.3(b) in the homework. The codewords all 
have length k or k + 1. Let m be the number of length k codewords. To satisfy Kraft 
with equality, m2−k + (M − m)2−k−1 = 1. Solving, m = 2k+1 − M . 
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Problem 2: (35 points) Consider a source X with M symbols, {1, 2, . . . ,M} ordered by 
probability with p1 ≥ p2 ≥ · · · ≥ pM > 0. The Huffman algorithm operates by joining 
the two least likely symbols together as siblings and then constructs an optimal prefix-free 
code for a reduced source X � in which the symbols of probability pM and pM−1 have been 
replaced by a single symbol of probability pM + pM−1. The expected code-length L of the 
code for the original source X is then equal to L

� 
+ pM + pM −1 where L

� 
is the expected 

code-length of X �. 

a)	 Express the entropy H(X) for the original source in terms of the entropy H(X �) of

the reduced source as


H(X) = H(X �) + (pM + pM−1)H(γ)	 (1) 

where H(γ) is the binary entropy function, H(γ) = −γ log γ − (1−γ) log(1−γ). Find 
the required value of γ to satisfy (2). 

M

H(X) = −pi log pi


i=1


M−2

H(X �) = −(pM−1+pM ) log(pM−1+pM ) − pi log pi 

i=1 

H(X) − H(X �) = (pM−1+pM ) log(pM−1+pM ) − pM log pM − pM−1 log pM−1 

= (pM−1+pM ) 
pM 

log 
pM pM−1 

log 
pM−1 −

pM−1+pM pM−1+pM 
− 

pM−1+pM pM−1+pM 

pM 
= (pM−1+pM )H


pM−1+pM


so γ = pM . 
pM−1+pM 

b)	 In the code tree generated by the Huffman algorithm, let v1 denote the intermediate

node that is the parent of the leaf nodes for symbols M and M−1. Let q1 = pM +pM−1


be the probability of reaching v1 in the code tree. Similarly, let v2, v3, . . . , denote

the subsequent intermediate nodes generated by the Huffman algorithm. How many

intermediate nodes are there, including the root node of the entire tree?


Each step of the Huffman algorithm reduces the number of symbols by 1 until only 1 
node (the root) is left. Thus there are M − 1 intermediate nodes, counting the root. 

c)	 Let q1, q2, . . . , be the probabilities of reaching the intermediate nodes �v1, v2, . . . , (note

that the probability of reaching the root node is 1). Show that L = i qi. Hint: Note

that L = L

� 
+ q1.


After the second step of the algorithm, L
� 
is related to the minimum expected length, 

say L
(2) 

of the further reduced code by L
� 

= L
(2) 

+ q2. Thus L = L 
2 

+ q1 + q2. 
Proceeding to step M − 1, (or more formally using induction) we have L = L 

M−1 
+ 

q1 + q2 + . . . , qM−1. Since the expected length for the root node is 0, L = qi.i 
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d)	 Express H(X) as a sum over the intermediate nodes. The ith term in the sum should 
involve qi and the binary entropy H(γi) for some γi to be determined. You may find 
it helpful to define αi as the probability of moving upward from intermediate node vi, 
conditional on reaching vi. (Hint: look at part a). 

Note that in part (a), H(X) = H(X �) + H(γ)q1 where γ = pM /(pM +pM−1) is the 
probability of moving up (or down) in the tree at node v1 conditional on reaching 
node v1. Since H(γ) = H(1 − γ), we see that 

H(X) = H(X �) + H(α1)q1. 

Applying the same argument to the reduced ensemble X � in terms of the next reduc
tion X(2), H(X �) = H(X(2))+ q2H(α2). Proceeding to the root (i.e., using induction), 

M−1

H(X) = qi H(αi) 
i=1 

e)	 Find the conditions (in terms of the probabilities and binary entropies above) under 
which L = H(X). 

L − H(X) = qi[1 − H(αi)] 
i 

The binary entropy H(γ) is less than or equal to 1, reaching 1 only when γ = 1/2. 
Thus L − H(X) = 0 if and only if αi = 1/2 for all i. This implicitly assumes that 
pi > 0 for all symbols. 

f) Are the formulas for L and H(X) above specific to Huffman codes alone, or do they 
apply (with the modified intermediate node probabilities and entropies) to arbitrary 
full prefix-free codes? 

The same arguments apply to any full code tree with any procedure for successively 
reducing sibling leaf nodes into the parent. 

Problem 3: (35 points) Consider a discrete source U with a finite alphabet of N real 
numbers, r1 < r2 < < rN with the pmf p1 > 0, . . . , pN > 0. The set {r1, . . . , rN } is to · · · 
be quantized into a smaller set of M < N representation points a1 < a2 < < aM .· · · 

a)	 Let R1, R2, . . . , RM be a given set of quantization intervals with R1 = (−∞, b1], R2 = 
(b1, b2], . . . , RM = (bM−1, ∞). Assume that at least one source value ri is in Rj for 
each j, 1 ≤ j ≤ M and give a necessary condition on the representation points {aj }
to achieve minimum MSE. 

Each representation point aj must be chosen as the conditional mean of the set of 
symbols in Rj . Specifically, 

aj = �i∈Rj 
pi ri 

. 
i∈Rj 

pi 

3


Cite as: Robert Gallager, course materials for 6.450 Principles of Digital Communications I, Fall 2006. MIT OpenCourseWare 
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



The reason for this is the same as that when the source has a probability density. For 
the given set of regions, and the assumption that each region contains a symbol from 
the source alphabet, this is both necessary and sufficient. Since the regions might not 
be optimally chosen, however, it is only a necessary condition on the overall minimum 
MSE. 

b)	 For a given set of representation points a1, . . . , aM , assume that no symbol ri lies ex
actly halfway between two neighboring aj , i.e., that ri =� aj +

2 
aj+1 for all i, j. Determine 

which interval Rj (and thus which representation point aj ) each symbol ri must be 
mapped into to minimize MSE for the given {aj }. Note that it is not necessary to 
place the boundary bj between Rj and Rj+1 at bj = [aj + aj+1]/2 since there is no 
probability in the immediate vicinity of [aj + aj+1]/2. 

The symbol ri has a squared error |ri − aj |2 if mapped into Rj and thus into aj . 
Thus ri must be mapped into the closest aj and thus the region Rj must contain 
all source symbols that are closer to aj than to any other representation point. The 
quantization intervals are not uniquely determined by this rule since Rj can end and 
Rj+1 can begin at any point between the largest source symbol closest to aj and the 
smallest source symbol closest to aj+1. 

c)	 For the given representation points, a1, . . . , aM , now assume that ri = aj +

2 
aj+1 for 

some source symbol ri and some j. Show that the MSE is the same whether ri is 
mapped into aj or into aj+1. 

Snce ri is midway between aj and aj+1, the squared error is |ri − aj |2 = |ri − aj+1|2 

no matter whether ri is mapped into aj or aj+1. 

d)	 For the assumption in part c), show that the set {aj } cannot possibly achieve minimum 
MSE. Hint: Look at the optimal choice of aj and aj+1 for each of the two cases of 
part c). 

We assume that the minimum MSE is achieved with representation points aj and 
aj+1 such that source value ri = (aj + aj+1)/2 and we demonstrate a contradiction. 
Consider two cases, first where ri is mapped to aj+1 and second where ri is mapped 
to aj . 

Case 1 (ri → aj+1): Let Rj include the points closest to aj not including ri and let 
Rj+1 include the points closest to aj+1 including ri.


Subcase 1.1: Assume aj is not the conditional mean of Rj . Then the MSE can be

reduced by changing aj , demonstrating the contradiction.


Subcase 1.2: Assume that aj is the conditional mean of Rj . As shown in (c), we 
can map ri into aj rather than aj+1 without changing the MSE. Let R�

j include the 
points closest to aj , now including ri. Because of the additional point in R�

j , 

] = aj	 (2) E[U |R�
j � = E[U |Rj ]. 

(This is demonstrated below.) Thus, for the new set of intervals with ri ∈ R�
j , the 

MSE can be reduced by changing aj to the new conditional mean. This establishes 
the contradiction for subcase 1.2 and thus for case 1. 
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Case 2: (ri → aj) The argument is the same as that in case 1, reversing the roles of 
j and j + 1. 

We now demonstrate (2) analytically. Let P = pi and let m = pi ri.i∈Rj i∈Rj 

Then aj = m/P . Let a�j be the conditional mean when ri is added to Rj . Note that 
ri is greater than each source point in Rj and thus ri > aj = m/P . We thus have 

a�j = 
m + piri 

>
m + pim/P 

= m 
1 + pi/P 

= m/P = aj
P + pi P + pi P + pi 
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