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Problem Set 3 Solutions


Problem 3.1 (Invariance of coding gain) 

(a) Show that in the power-limited regime the nominal coding gain γc(A) of (5.9), the UBE 
(5.10) of Pb(E), and the effective coding gain γeff (A) are invariant to scaling, orthogonal 
transformations and Cartesian products. 

In the power-limited regime, the nominal coding gain is defined as 

2dmin(A)
γc(A) =  . 

4Eb(A) 

2Scaling A by α > 0 multiplies both dmin(A) and  Eb(A) by  α2, and therefore leaves γc(A) 
2unchanged. Orthogonal transformations of A do not change either dmin(A) or  Eb(A). 

As we have seen in Problem 2.1, taking Cartesian products also does not change either 
2dmin(A) or  Eb(A). Therefore γc(A) is invariant under all these operations.


The UBE of Pb(E) involves  γc(A) and  Kb(A) =  Kmin(A)/(| log |A|). Kmin(A) is also 

obviously unchanged under scaling or orthogonal transformations. Problem 2.1 showed

that Kmin(A) increases  by a factor of  K under a K-fold Cartesian product, but so does

log |A|, so  Kb(A) is also unchanged under Cartesian products.


The effective coding gain is a function of the UBE of Pb(E), and therefore it is invariant

also. 

(b) Show that in the bandwidth-limited regime the nominal coding gain γc(A) of (5.14), 
the UBE (5.15) of Ps(E), and the effective coding gain γeff (A) are invariant to scaling, 
orthogonal transformations and Cartesian products. 

In the bandwidth-limited regime, the nominal coding gain is defined as 

2(2ρ(A) − 1)dmin(A)
γc(A) =  . 

6Es(A) 

2Scaling A by α > 0 multiplies both dmin(A) and  Es(A) by  α2 and does not change ρ(A), 
and therefore leaves γc(A) unchanged. Orthogonal transformations of A do not change 

2dmin(A), Eb(A) or  ρ(A). As we have seen in Problem 2.1, taking Cartesian products also 
does not change d2 

b(A) or  ρ(A). Therefore γc(A) is invariant under all these min(A), E
operations.


The UBE of Ps(E) involves  γc(A) and  Ks(A) = (2/N)Kmin(A). Kmin(A) is also obvi
-
ously unchanged under scaling or orthogonal transformations. Problem 2.1 showed that

Kmin(A) increases  by a factor of  K under a K-fold Cartesian product, but so does N , so 

Ks(A) is also unchanged under Cartesian products.


The effective coding gain is a function of the UBE of Ps(E), and therefore it is invariant

also. 
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Problem 3.2 (Orthogonal signal sets)


An orthogonal signal set is a set A = {aj, 1 ≤ j ≤ M } of M orthogonal vectors in RM


with equal energy E(A); i.e., 〈aj, aj� 〉 = E(A)δjj� (Kronecker delta).


(a) Compute the nominal spectral efficiency ρ of A in bits per two dimensions. Compute 
the average energy Eb per information bit.


The rate of A is log2 M bits per M dimensions, so the nominal spectral efficiency is


ρ = (2/M ) log2 M bits per two dimensions. 

The average energy per symbol is E(A), so the average energy per bit is 

E(A)
Eb = . 

log2 M 

(b) Compute the minimum squared distance d2 Show that every signal hasmin(A). 
Kmin(A) =  M − 1 nearest neighbors.


The squared distance between any two distinct vectors is


||aj − aj� ||2 = ||aj||2 − 2〈aj, aj� 〉 + ||aj� ||2 = E(A) − 0 +  E(A) = 2E(A), 

so d2 

K
min(A) = 2E(A), and every vector has all other vectors as nearest neighbors, so 

min(A) =  M − 1. 

(c) Let the noise variance be σ2 = N0/2 per dimension. Show that the probability of error 
of an optimum detector is bounded by the UBE 

√ 
Pr(E) ≤ (M − 1)Q (E(A)/N0). 

The pairwise error probability between any two distinct vectors is 

√ √ √ 
Pr{aj → aj� } = Q (||aj − aj� ||2/4σ2) =  Q (2E(A)/2N0) =  Q (E(A)/N0). 

By the union bound, for any aj ∈ A, 

Pr(E | aj) ≤ 
� 

Pr{aj → aj� } = (M − 1)Q 
√ 
(E(A)/N0), 

j� �=j 

so the average Pr(E) also satisfies this upper bound. 

(d) Let M → ∞  with Eb held constant. Using an asymptotically accurate upper bound √ 
for the Q (·) function (see Appendix), show that Pr(E) → 0 provided that Eb/N0 > 2 ln 2  
(1.42 dB). How close is this to the ultimate Shannon limit on Eb/N0? What is the nominal 
spectral efficiency ρ in the limit? 

√ −x2/2By the Chernoff bound of the Appendix, Q (x2) ≤ e . Therefore 

Pr(E) ≤ (M − 1)e −E(A)/2N0 < e(ln M)e −(Eb log2 M)/2N0 . 
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′ 

Since ln M = (log2 M )(ln 2), as M → ∞  this bound goes to zero provided that 

Eb/2N0 > ln 2, 

or equivalently Eb/N0 > 2 ln 2  (1.42  dB). 


The ultimate Shannon limit on Eb/N0 is Eb/N0 > ln 2 (-1.59 dB), so this shows that

we can get to within 3 dB of the ultimate Shannon limit with orthogonal signalling. (It

was shown in 6.450 that orthogonal signalling can actually achieve Pr(E) → 0 for any

Eb/N0 > ln 2, the ultimate Shannon limit.)


Unfortunately, the nominal spectral efficiency ρ = (2  log2 M )/M goes to 0 as M → ∞.


Problem 3.3 (Simplex signal sets) 

Let A be an orthogonal signal set as above. 

(a) Denote the mean of A by m(A). Show that m(A) �= 0, and compute ||m(A)||2 . 

By definition, 
1 

m(A) =  
M

� 

j 

aj . 

Therefore, using orthogonality, we have 

1 ||m(A)||2 = 
E(A)
� 

j 

||aj ||2 = 0.= 
M 2 M 

= 0 implies that m(A) �By the strict non-negativity of the Euclidean norm, ||m(A)||2 � = 0. 

The zero-mean set A′ = A −  m(A) (as in Exercise 2) is called a simplex signal set. It  
is universally believed to be the optimum set of M signals in AWGN in the absence of 
bandwidth constraints, except at ridiculously low SNRs. 

(b) For M = 2, 3, 4, sketch A and A′ . 

For M = 2, 3, 4, A consists of M orthogonal vectors in M -space (hard to sketch for 
M = 4).  For  M = 2,  A′ consists of two antipodal signals in a 1-dimensional subspace 
of 2-space; for M = 3,  A′ consists of three vertices of an equilateral triangle in a 2-
dimensional subspace of 3-space; and for M = 4,  A′ consists of four vertices of a regular 
tetrahedron in a 3-dimensional subspace of 4-space. 

(c) Show that all signals in A′ have the same energy E(A′). Compute E(A′). Compute 
the inner products 〈aj , aj� 〉 for all aj , aj� ∈ A′ . 

The inner product of m(A) with any  aj is 

1 〈aj� , aj 〉 = 
EA 

M

.


� 

�j

〈m(A), aj 〉 = 
M


The energy of aj 
′ = aj − m(A) is therefore 

M − 1 ||aj ||2 = ||aj ||2 − 2〈m(A), aj 〉 + ||m(A)||2 = E(A) − 
E(A)

= E(A). 
M M 
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= j′, the inner product 〈aj , aj� 〉 isFor j � ′ ′ 

E(A) E(A) E(A)〈aj 
′ , aj� 〉 = 〈aj − m(A), aj� − m(A)〉 = 0  − 2 + = − . 

M M M 

In other words, the inner product is equal to M −1 E(A) if  j′ = j and − 1 E(A) for  j′ �= j.
M M 

(d) [Optional]. Show that for ridiculously low SNR, a signal set consisting of M − 2 
zero signals and two antipodal signals {±a} has a lower Pr(E) than a simplex signal set. 
[Hint: see M. Steiner, “The strong simplex conjecture is false,” IEEE Transactions 
on Information Theory, pp. 721-731, May 1994.] 

See the cited article. 

Problem 3.4 (Biorthogonal signal sets) 

The set A′′ = ±A of size 2M consisting of the M signals in an orthogonal signal set A 
with symbol energy E(A) and their negatives is called a biorthogonal signal set. 

(a) Show that the mean of A′′ is m(A′′) =  0, and that the average energy is E(A). 

The mean is 
m(A′′) =  

�
(aj − aj ) =  0, 

j 

and every vector has energy E(A). 

(b) How much greater is the nominal spectral efficiency ρ of A′′ than that of A? 

The rate of A′′ is log2 2M =  1 + log2 M bits per M dimensions, so its nominal spectral 
efficiency is ρ = (2/M )(1 + log2 M ) b/2D, which is 2/M b/2D greater than for A. This 
is helpful for small M , but negligible as M → ∞. 

(c) Show that the probability of error of A′′ is approximately the same as that of an 
orthogonal signal set with the same size and average energy, for M large.


Each vector in A′′ has 2M − 2 nearest neighbors at squared distance 2E(A), and one

antipodal vector at squared distance 4E(A). The union bound estimate is therefore


√ √ 
Pr(E) ≈ (2M − 2)Q (E(A)/N0) ≈ |A′′|Q (E(A)/N0), 

√ 
which is approximately the same as the estimate Pr(E) ≈ (2M − 1)Q (E(A)/N0) ≈ √ |A|Q (E(A)/N0) for an orthogonal signal set A of size |A| = 2M . 

(d) Let the number of signals be a power of 2: 2M = 2k . Show that the nominal spectral 
efficiency is ρ(A′′) = 4k2−k b/2D, and that the nominal coding gain is γc(A′′) =  k/2. 
Show that the number of nearest neighbors is Kmin(A′′) = 2k − 2. 

If M = 2k−1, then the nominal spectral efficiency is 

ρ(A′′) = (2/M )(1 + log2 M ) = 22−k k = 4k2−k b/2D. 

d

We are in the power-limited regime, so the nominal coding gain is 
2 2E(A′′) k 

γc(A′′ min(A′′)
) =  =

4E(A′′)/k 
= . 

4Eb 2 

The number of nearest neighbors is Kmin(A′′) = 2M − 2 = 2k − 2. 
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Problem 3.5 (small nonbinary constellations) 

A

(a) For M = 4, the (2 × 2)-QAM signal set is known to be optimal in N = 2  dimensions. 
Show however that there exists at least one other inequivalent two-dimensional signal set 

′ with the same coding gain. Which signal set has the lower “error coefficient” Kmin(A)? 

The 4-QAM signal set A with points {(±α, ±α)} has b = 2,  d2 
min(A) = 4α2 and E(A) =  

2α2, so  A has Eb = E(A)/2 =  α2 and γc(A) =  d2 
min(A)/4Eb = 1.  √ √ 

The 4-point hexagonal signal set A′ with points at {(0, 0), (α, 3α), (2α, 0), (3α, 3α)} 

A
√ 

has mean m = (3α/2, 3α)/2) and average energy E(A′) = 5α2 . If we translate A′ to 
′′ = A′ − m to remove the mean, then E(A′′) =  E(A′) − ||m||2 = 5α2 − 3α2 = 2α2 . 

Thus A′′ has the same minimum squared distance, the same average energy, and thus the 
same coding gain as A. 

In A, each point has two nearest neighbors, so Kmin(A) = 2.  In  A′, two points have 
two nearest neighbors and two points have three nearest neighbors, so Kmin(A′) = 2.5. 
(This factor of 1.25 difference in error coefficient will cost about (1/4) · (0.2) = 0.05 dB 
in effective coding gain, by our rule of thumb.) 

[Actually, all parallelogram signal sets with sides of length 2α and angles between 60◦ and 
90◦ have minimum squared distance 4α2 and average energy 2α2, if the mean is removed.] 

(b) Show that the coding gain of (a) can be improved in N = 3  dimensions. [Hint: consider 
the signal set A′′ = {(1, 1, 1), (1, −1, −1), (−1, 1, −1), (−1, −1, 1)}.] Sketch A′′ . What is 
the geometric name of the polytope whose vertex set is A′′? 

The four signal points in A′′ are the vertices of a tetrahedron (see Chapter 6, Figure 1). 
The minimum squared distance between points in A′′ is 2 · 4 = 8, and the average energy 
is E(A′′) = 3,  so  Eb = 3/2. Thus the coding gain of A′′ is γc(A′′) =  d2 

min(A′′)/4Eb = 4/3, 
a factor of 4/3 (1.25 dB) better than that of A. 

However, the nominal spectral efficiency ρ of A′′ is only 4/3 b/2D, compared to ρ = 2  
b/2D for A; i.e., A′′ is less bandwidth-efficient. Also, each point in A′′ has Kmin(A′′) = 3  
nearest neighbors, which costs about 0.1 dB in effective coding gain. 

(c) Give an accurate plot of the UBE of the Pr(E) for the signal set A′′ of (b). How much 
is the effective coding gain, by our rule of thumb and by this plot? 

The UBE for Pr(E) is  

√ √ 
Pr(E) ≈ Kmin(A′′)Q (2γc(A′′)Eb/N0) = 3Q (2

4 
Eb/N0). 

3 
√ 

Since each signal sends 2 bits, the UBE for Pb(E) is  1
32 Pr(E): Pb(E) ≈ 1.5Q (2 4 Eb/N0). 

An accurate plot of the UBE may be obtained by moving the baseline curve Pb(E) ≈ √ 
Q (2Eb/N0) to the left by 1.25 dB and up by a factor of 1.5, as shown in Figure 1. This 
shows that the effective coding gain is about γeff (A′′) ≈ 1.15 dB at Pb(E) ≈ 10−5. Our  √ 
rule of thumb gives approximately the same result, since 1.5 is equal to about 2. 
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Simplex signal sets

10

0


P
b(E

) 

10
−1 

−2
10

10
−3 

10
−4 

−5
10

10
−6 

−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 
Eb/N0 [dB] 

Uncoded 2−PAM 
simplex M=4 

Figure 1. Pb(E) vs. Eb/N0 for tetrahedron (4-simplex) signal set. 

(d) For M = 8  and N = 2, propose at least two good signal sets, and determine which 
one is better. [Open research problem: Find the optimal such signal set, and prove that it 
is optimal.] 

Possible 8-point 2-dimensional signal sets include: 

(i) 8-PSK. If the radius of each signal point is r, then the minimum distance is dmin = 
2r sin 22.5◦, so to achieve dmin = 2 requires r = 1/(sin 22.5◦) = 2.613,  or an energy of  
6.828 (8.34 dB). 

(ii) An 8-point version of the V.29 signal set, with four points of type (1, 1) and four 
points of type (3, 0). The average energy is then 5.5 (7.40 dB), about 1 dB better than 
8-PSK. Even better, the minimum distance can be maintained at dmin = 2 if the outer √ 
points are moved in to (1 + 3, 0), which reduces the average energy to 4.732 (6.75 dB). 

(iii) Hexagonal signal sets. One hexagonal 8-point set with dmin = 2 has 1 point at 
the origin, 6 at squared radius 4, and 1 at squared radius 12, for an average energy of √ 
36/8 = 4.5 (6.53 dB). The mean m has length 12/8, so removing the mean reduces the

energy further by 3/16 = 0.1875 to 4.3125 (6.35 dB).


Another more symmetrical hexagonal signal set (the “double diamond”) has points at
√ √ 
(±1, 0), (0, ± 3) and (±2, ± 3). This signal set also has average energy 36/8 = 4.5 
(6.53 dB), and zero mean. 
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Problem 3.6 (Even-weight codes have better coding gain)


Let C be an (n, k, d) binary linear code with d odd. Show that if we append an overall

parity check p = 

�
i xi to each codeword x, then we obtain an (n + 1, k, d  + 1)  binary


linear code C ′ with d even. Show that the nominal coding gain γc(C ′) is always greater

than γc(C) if k >  1. Conclude that we can focus primarily on linear codes with d even.


The new code C ′ has the group property, because the mod-2 sum of two codewords

(x1, . . .  , xn, p  = 

�
i xi) and  (x1, . . .  , xn, p = 

�
i xi) is  

(x1 + x1, . . .  , xn + xn, p + p ′ = 
� 

xi + xi), 
i 

another codeword in C ′ . Its length is n′ = n+ 1, and it has the same number of codewords 
(dimension). Since the parity bit p is equal to 1 for all odd-weight codewords in C, the  
weight of all odd-weight codewords is increased by 1, so the minimum nonzero weight 
becomes d′ = d + 1. We conclude that C ′ is a binary linear (n + 1, k, d + 1) block code. 

to (d+1)kThe nominal coding gain thus goes from dk . Since 
n n+1 

d n 
< 

d + 1  n + 1  

if d < n, the nominal coding gain strictly increases unless d = n— i.e., unless C is a 
repetition code with k = 1— in which case it stays the same (namely 1 (0 dB)). 
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