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Due: Wednesday, March 9,  

Problem Set 5 

Problem 5.1 (Euclidean division algorithm). 

(a) For the set F[x] of polynomials over any field F, show that the distributive law holds: 
(f1(x) +  f2(x))h(x) =  f1(x)h(x) +  f2(x)h(x). 

(b) Use the distributive law to show that for any given f(x) and  g(x) in  F[x], there is a 
unique q(x) and  r(x) with deg  r(x) < deg g(x) such that  f(x) =  q(x)g(x) +  r(x). 

Problem 5.2 (unique factorization of the integers).


Following the proof of Theorem 7.7, prove unique factorization for the integers Z.


Problem 5.3 (finding irreducible polynomials). 

(a) Find all prime polynomials in F2[x] of degrees 4 and 5. [Hint: There are three prime 
polynomials in F2[x] of degree 4 and six of degree 5.] 

(b) Show that x16 + x factors into the product of the prime polynomials whose degrees 
divide 4, and x32 + x factors into the product of the prime polynomials whose degrees 
divide 5. 

Problem 5.4 (The nonzero elements of Fg(x) form an abelian group under multiplication). 

Let g(x) be a prime polynomial of degree m, and  r(x), s(x), t(x) polynomials in Fg(x). 

(a) Prove the distributive law, i.e., (r(x) +  s(x)) ∗ t(x) =  r(x) ∗ t(x) +  s(x) ∗ t(x). [Hint: 
Express each product as a remainder using the Euclidean division algorithm.] 

= 0, show that r(x) ∗ s(x) � = t(x).(b) For r(x) � = r(x) ∗ t(x) if  s(x) �
(c) For r(x) �= 0, show that as s(x) runs through all nonzero polynomials in Fg(x), the  
product r(x) ∗ s(x) also runs through all nonzero polynomials in Fg(x). 

(d) Show from this that r(x) �= 0 has a mod-g(x) multiplicative inverse in Fg(x); i.e., that 
r(x) ∗ s(x) = 1  for  some  s(x) ∈ Fg(x). 

Problem 5.5 (Construction of F32). 

F

(a) Using an irreducible polynomial of degree 5 (see Problem 5.3), construct a finite field 
32 with 32 elements. 

(b) Show that addition in F32 can be performed by vector addition of 5-tuples over F2. 

(c) Find a primitive element α ∈ F32. Express every nonzero element of F32 as a distinct 
power of α. Show how to perform multiplication and division of nonzero elements in F32 

using this “log table.” 
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(d) Discuss the rules for multiplication and division in F32 when one of the field elements 
involved is the zero element, 0 ∈ F32. 

F

Problem 5.6 (Second nonzero weight of an MDS code)


Show that the number of codewords of weight d + 1  in  an  (n, k, d) linear MDS code over

q is
 � � �  � � � 

n d + 1  
Nd+1 = (q 2 − 1) − (q − 1) ,

d + 1  d 

where the first term in parentheses represents the number of codewords with weight ≥ d in 
any subset of d+ 1 coordinates, and the second term represents the number of codewords 
with weight equal to d. 

Problem 5.7 (Nd and Nd+1 for certain MDS codes) 

(a) Compute the number of codewords of weights 2 and 3 in an (n, n − 1, 2) SPC code 
over F2. 

(b) Compute the number of codewords of weights 2 and 3 in an (n, n − 1, 2) linear code 
over F3. 

(c) Compute the number of codewords of weights 3 and 4 in a (4, 2, 3) linear code over 
F3. 

Problem 5.8 (“Doubly” extended RS codes) 

q )
q+1(a) Consider the following mapping from (Fq )

k to (F . Let (f0, f1, . . .  , fk−1) be any  
k-tuple over Fq , and define the polynomial f(z) =  f0 + f1z + · · · + fk1 z

k−1 of degree less 
than k. Map  (f0, f1, . . .  , fk−1) to the  (q + 1)-tuple ({f(βj ), βj ∈ Fq }, fk−1)— i.e., , to the  
RS codeword corresponding to f(z), plus an additional component equal to fk−1. 

Show that the qk (q + 1)-tuples generated by this mapping as the polynomial f(z) ranges 
over all qk polynomials over Fq of degree less than k form a linear (n = q+1, k, d  = n−k+1) 
MDS code over Fq . [Hint: f(z) has degree less than k − 1 if and only if fk−1 = 0.]  

(b) Construct a (4, 2, 3) linear code over F3. Verify that all nonzero words have weight 3. 
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