Problem Set 5

Problem 5.1 (Euclidean division algorithm).

(a) For the set $\mathbb{F}[x]$ of polynomials over any field \mathbb{F} , show that the distributive law holds: $(f_1(x) + f_2(x))h(x) = f_1(x)h(x) + f_2(x)h(x).$

(b) Use the distributive law to show that for any given f(x) and g(x) in $\mathbb{F}[x]$, there is a unique q(x) and r(x) with deg $r(x) < \deg g(x)$ such that f(x) = q(x)g(x) + r(x).

Problem 5.2 (unique factorization of the integers).

Following the proof of Theorem 7.7, prove unique factorization for the integers \mathbb{Z} .

Problem 5.3 (finding irreducible polynomials).

(a) Find all prime polynomials in $\mathbb{F}_2[x]$ of degrees 4 and 5. [Hint: There are three prime polynomials in $\mathbb{F}_2[x]$ of degree 4 and six of degree 5.]

(b) Show that $x^{16} + x$ factors into the product of the prime polynomials whose degrees divide 4, and $x^{32} + x$ factors into the product of the prime polynomials whose degrees divide 5.

Problem 5.4 (The nonzero elements of $\mathbb{F}_{g(x)}$ form an abelian group under multiplication). Let g(x) be a prime polynomial of degree m, and r(x), s(x), t(x) polynomials in $\mathbb{F}_{g(x)}$.

(a) Prove the distributive law, *i.e.*, (r(x) + s(x)) * t(x) = r(x) * t(x) + s(x) * t(x). [Hint: Express each product as a remainder using the Euclidean division algorithm.]

(b) For $r(x) \neq 0$, show that $r(x) * s(x) \neq r(x) * t(x)$ if $s(x) \neq t(x)$.

(c) For $r(x) \neq 0$, show that as s(x) runs through all nonzero polynomials in $\mathbb{F}_{g(x)}$, the product r(x) * s(x) also runs through all nonzero polynomials in $\mathbb{F}_{g(x)}$.

(d) Show from this that $r(x) \neq 0$ has a mod-g(x) multiplicative inverse in $\mathbb{F}_{g(x)}$; *i.e.*, that r(x) * s(x) = 1 for some $s(x) \in \mathbb{F}_{g(x)}$.

Problem 5.5 (Construction of \mathbb{F}_{32}).

(a) Using an irreducible polynomial of degree 5 (see Problem 5.3), construct a finite field \mathbb{F}_{32} with 32 elements.

(b) Show that addition in \mathbb{F}_{32} can be performed by vector addition of 5-tuples over \mathbb{F}_2 .

(c) Find a primitive element $\alpha \in \mathbb{F}_{32}$. Express every nonzero element of \mathbb{F}_{32} as a distinct power of α . Show how to perform multiplication and division of nonzero elements in \mathbb{F}_{32} using this "log table."

(d) Discuss the rules for multiplication and division in \mathbb{F}_{32} when one of the field elements involved is the zero element, $0 \in \mathbb{F}_{32}$.

Problem 5.6 (Second nonzero weight of an MDS code)

Show that the number of codewords of weight d + 1 in an (n, k, d) linear MDS code over \mathbb{F}_q is

$$N_{d+1} = \binom{n}{d+1} \left((q^2 - 1) - \binom{d+1}{d} (q-1) \right),$$

where the first term in parentheses represents the number of codewords with weight $\geq d$ in any subset of d+1 coordinates, and the second term represents the number of codewords with weight equal to d.

Problem 5.7 (N_d and N_{d+1} for certain MDS codes)

(a) Compute the number of codewords of weights 2 and 3 in an (n, n - 1, 2) SPC code over \mathbb{F}_2 .

(b) Compute the number of codewords of weights 2 and 3 in an (n, n - 1, 2) linear code over \mathbb{F}_3 .

(c) Compute the number of codewords of weights 3 and 4 in a (4, 2, 3) linear code over \mathbb{F}_3 .

Problem 5.8 ("Doubly" extended RS codes)

(a) Consider the following mapping from $(\mathbb{F}_q)^k$ to $(\mathbb{F}_q)^{q+1}$. Let $(f_0, f_1, \ldots, f_{k-1})$ be any *k*-tuple over \mathbb{F}_q , and define the polynomial $f(z) = f_0 + f_1 z + \cdots + f_{k_1} z^{k-1}$ of degree less than *k*. Map $(f_0, f_1, \ldots, f_{k-1})$ to the (q+1)-tuple $(\{f(\beta_j), \beta_j \in \mathbb{F}_q\}, f_{k-1}) - i.e.,$, to the RS codeword corresponding to f(z), plus an additional component equal to f_{k-1} .

Show that the q^k (q+1)-tuples generated by this mapping as the polynomial f(z) ranges over all q^k polynomials over \mathbb{F}_q of degree less than k form a linear (n = q+1, k, d = n-k+1)MDS code over \mathbb{F}_q . [Hint: f(z) has degree less than k-1 if and only if $f_{k-1} = 0$.]

(b) Construct a (4, 2, 3) linear code over \mathbb{F}_3 . Verify that all nonzero words have weight 3.