
         

6.451 Principles of Digital Communication II Tuesday, May 17, 2005
MIT, Spring 2005 Handout #26

Final solutions

Problem F.1 (50 points)

In this problem, we will investigate ML decoding using the standard VA on a minimal
conventional trellis, or using a modified VA on a tail-biting trellis.

Consider the (6, 3, 3) binary linear code C that is generated by the following generator
matrix:

G =




1 1 1 0 0 0
0 0 1 1 1 0
1 0 0 0 1 1




(a) Find the state and branch complexity profiles of an unsectionalized minimal trellis
for C. Draw the corresponding minimal trellis for C, and label each branch with the
corresponding output symbol. Verify that there is a one-to-one map between the codewords
of C and the paths through the trellis.

We first find a trellis-oriented generator matrix for C. Replacing the third generator by
the sum of the first and third generator, we arrive at the following generator matrix:

G′ =




1 1 1 0 0 0
0 0 1 1 1 0
0 1 1 0 1 1




Since the starting times and ending times of all generators are distinct, G′ is trellis-
oriented.

Using the active intervals of the generators in G′, we find that the state dimension pro-
file of a minimal trellis for C is {0, 1, 2, 2, 2, 1, 0}, and the branch dimension profile is
{1, 2, 3, 2, 2, 1}. Explicitly, a minimal trellis is
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We verify that there are eight paths through the trellis corresponding to the codewords
{000000, 111000, 001110, 110110, 011011, 100011, 010101, 101101}.
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(b) Show that the following unsectionalized 2-state tail-biting trellis (TBT) realizes C.
(Recall that in a TBT there may be more than one state in Σ0 = Σ6, the starting and
ending state space, and that the valid paths are those that start and end in the same state
in Σ0 = Σ6.) Verify that there is a one-to-one map between the codewords of C and the
valid paths through the tail-biting trellis.
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Figure 1. Tail-biting trellis for C.

Here the two states at state time 6 should be regarded as the same as the two states at
state time 0. The valid paths are those that start and end in state 0, corresponding to the
four codewords {000000, 111000, 001110, 110110}, and those that start and end in state
1, corresponding to the four codewords {011011, 100011, 010101, 101101}. Thus we verify
that this TBT realizes C.
Draw a normal graph of this tail-biting trellis realization of C.

The normal graph of a tail-biting trellis looks the same as that of a conventional trellis,
except that the two ends are joined so that the ending state variable is the same as the
starting state variable. In this case all states are binary, and the constraints are alternately
single-parity-check and repetition constraints. So the normal graph looks like this:

+ + += = = �	�

Normal graph of a tail-biting trellis for C.

Note that G is a TBT-oriented generator matrix for C, in the following sense. If the active
intervals of the generators in G are viewed on an end-around basis— i.e., [0, 2], [2, 4], and
[4, 0]— then there is only one generator active at each state time, so the corresponding
state dimension profile is {1, 1, 1, 1, 1, 1}. Similarly, these end-around activity intervals
imply a branch dimension profile of {2, 1, 2, 1, 2, 1}. The TBT above is generated by these
three end-around generators in the same way as a conventional trellis is generated by
conventional trellis-oriented generators.

(c) Propose a modification to the Viterbi algorithm that finds the maximum-likelihood
(ML) codeword in C, using the tail-biting trellis of part (b). Compare the complexity of
your modified VA to that of the standard VA operating on the minimal conventional trellis
of part (a).

We can run the standard Viterbi algorithm on the two subtrellises consisting of the subsets
of valid paths that start and end in states 0 and 1, respectively. This will find the ML
codeword among the two corresponding subsets of 4 codewords. We can then choose the
best of these two survivors as the ML codeword.
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Roughly, this requires running the VA twice on two two-state trellises, compared to one
four-state trellis, so in terms of state complexity the complexity is roughly the same. The
maximum branch complexity of the two-state trellises is 4, whereas that of the four-state
trellis is 8, so again the branch complexity is roughly the same. Finally, if we do a detailed
count of additions and comparisons, we find that both methods require 22 additions and 7
comparisons— exactly the same. We conclude that the simpler tail-biting trellis requires
the same number of operations for ML decoding, if we use this modified VA.

(d) For a general (n, k) linear code C with a given coordinate ordering, is it possible to find
a minimal unsectionalized tail-biting trellis that simultaneously minimizes the complexity
of each of the n state spaces over all tail-biting trellises? Explain.

The example above shows that this is not possible. The conventional trellis for C is
also a tail-biting trellis for C with a state space Σ0 = Σ6 = {0} of size 1. Thus, as
a TBT, the conventional trellis minimizes the state space size at state time 0, but at
the cost of state spaces larger than 2 at other times. We have already noted that it is
not possible to construct a TBT for C that achieves the state space dimension profile
{0, 1, 1, 1, 1, 1}, which is what would be necessary to achieve the minima of these two
profiles simultaneously at all state times.

Moreover, we can similarly obtain a tail-biting trellis with a state space of size 1 at
any state time, by cyclically shifting the generators in order to construct a minimal
conventional trellis that starts and ends at that state time. But there is obviously no way
to obtain a minimal state space size of 1 at all state times simultaneously.

(e) Given a general linear code C and an unsectionalized tail-biting trellis for C, propose
a modified VA that performs ML decoding of C using the tail-biting trellis. In view of the
cut-set bound, is it possible to achieve a significant complexity reduction over the standard
VA by using such a modified VA?

In general, we can run the standard VA on the |Σ0| subtrellises consisting of the subsets
of valid paths that start and end in each state in Σ0. This will find the ML codeword
among each of the |Σ0| corresponding codeword subsets. We can then choose the best of
these |Σ0| survivors as the ML codeword.

The complexity of this modified VA is of the order of |Σ0| times the complexity of VA
decoding a subset trellis. The subset trellis state complexity is the state complexity
maxk |ΣC′k | for a conventional trellis for the code C ′ that is generated by the generators
of the TBT-oriented generator matrix for C that do not span state time 0. Choose a
cut set consisting of state time 0 and state time k for any other k, 0 < k < n. By the
cut-set bound, the total number of generators that span state time either 0 or k is not
less than the minimal total number of generators that span state time k in a conventional
trellis for C. Therefore |Σ0||ΣC′k | ≥ |ΣCk | for any k, 0 < k < n. But this implies that
maxk |Σ0||ΣC′k | ≥ maxk |ΣCk |. Thus no reduction in aggregate state complexity can be
obtained by the modified VA.

An easier way of seeing this is to notice that the operation of the modified VA is the same
as that of a standard VA on a nonminimal conventional trellis consisting of |Σ0| parallel
subtrellises, joined only at the starting and ending nodes. For example, for part (c) we
can think of a standard VA operating on the following nonminimal conventional trellis:
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Since this is merely another conventional trellis, in general nonminimal, the modified VA
operating on this trellis must clearly be at least as complex as the standard VA operating
on the minimal conventional trellis.

We conclude that if we use the modified VA on a TBT to achieve ML decoding, then we
cannot achieve any savings in decoding complexity. On the other hand, iterative decoding
on the TBT may be less complex, but in general will not give ML decoding performance.

Problem F.2 (60 points)

In this problem, we will analyze the performance of iterative decoding of a rate-1/3 repeat-
accumulate (RA) code on a binary erasure channel (BEC) with erasure probability p, in
the limit as the code becomes very long (n→∞).

(3, 1, 3)-info bits - Π -u(D) 1
1+D

-y(D)

Figure 2. Rate-1
3

RA encoder.

The encoder for the rate-1/3 RA code is shown in Figure 2 above, and works as follows.
A sequence of information bits is first encoded by an encoder for a (3, 1, 3) repetition
code, which simply repeats each information bit three times. The resulting sequence is
then permuted by a large pseudo-random permutation Π. The permuted sequence u(D)
is then encoded by a rate-1/1 2-state convolutional encoder with input/output relation
y(D) = u(D)/(1 +D); i.e., the input/output equation is yk = uk + yk−1, so the output bit
is simply the “accumulation” of all previous input bits (mod 2).
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(a) Show that this rate-1
3

RA code has the normal graph of Figure 3.
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Figure 3. Normal graph of rate-1
3

RA code.

The left-side nodes of Figure 2 represent the repetition code. Since the original information
bits are not transmitted, they are regarded as hidden state variables, repeated three times.
The repeated bits are permuted in the permutation Π. On the right side, the permuted
bits uk are the input bits and the yk are the output bits of a 2-state trellis, whose states
are the output bits yk. The trellis constraints are represented explicitly by zero-sum nodes
that enforce the constraints yk + uk + yk−1 = 0.

(b) Suppose that the encoded bits are sent over a BEC with erasure probability p. Explain
how iterative decoding works in this case, using a schedule that alternates between the left
constraints and the right constraints.

The outputs of a BEC are either known with certainty or completely unknown (erased).
The sum-product algorithm reduces to propagation of known variables through the code
graph. If any variable incident on a repetition node becomes known, then all become
known. On the other hand, for a zero-sum node, all but one incident variable must be
known in order to determine the last incident variable; otherwise all unknown incident
variables remain unknown.

In detail, we see that initially an input bit uk becomes known if and only if the two
adjoining received symbols, yk and yk−1, are unerased. After passage through Π, these
known bits propagate through the repetition nodes to make all equal variables known.
After passage through Π, the right-going known bits are propagated through the trellis,
with additional input or output bits becoming known whenever two of the three bits in
any set {yk−1, uk, yk} become known. Known input bits uk are then propagated back
through Π, and so forth.
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(c) Show that, as n→∞, if the probability that a left-going iterative decoding message is
erased is qr→`, then the probability that a right-going messages is erased after a left-side
update is given by

q`→r = (qr→`)
2.

As n→∞, for any fixed number m of iterations, we may assume that all variables in the
m-level iteration tree are independent.

A right-going message is erased if and only if both left-going messages that are incident
on the same repetition node is erased. Thus if these two variables are independent, each
with probability qr→` of erasure, then q`→r = (qr→`)2.

(d) Similarly, show that if the probability that a right-going iterative decoding message is
erased is q`→r, then the probability that a left-going message is erased after a right-side
update is given by

qr→` = 1− (1− p)2

(1− p+ pq`→r)2
.

[Hint: observe that as n → ∞, the right-side message probability distributions become
invariant to a shift of one time unit.]

For a particular input bit, the messages that contribute to the calculation of the outgoing
message look like this:

+ + + + += = = =

qout↓

p p p pqin qin qin qin

y y y yx x x x x x↓ ↓ ↓ ↓↓ ↓ ↓ ↓
→ → ← ←→ → → ← ← ←. . . . . .

Here p denotes the probability that an output bit yk will be erased on the channel, qin

denotes the probability q`→r that an input bit uk will still be erased after the previous
iteration, and qout denotes the probability qr→` that the bit that we are interested in
will be erased after this iteration. Again, as n → ∞, we may assume that all of these
probabilities are independent.

Following the hint, we use the symmetry and time-invariance of the trellises on either
side of uk to assert that as n → ∞ the probability of erasure x in all of the messages
marked with x will be the same, and similarly that the probability of erasure y in all of
the messages marked with y will be the same.

The relations between these probabilities are then evidently as follows:

x = py; 1− y = (1− qin)(1− x); 1− qout = (1− x)2.

Solving the first two equations, we obtain

y =
qin

1− p+ pqin
, x =

pqin

1− p+ pqin
,

and thus

qout = 1− (1− p)2

(1− p+ pqin)2
.
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(e) Using a version of the area theorem that is appropriate for this scenario, show that
iterative decoding cannot succeed if p ≥ 2

3
.

The area under the curve of part (c) is

∫ 1

0

q2dq =
1

3
.

The area under the curve of part (d) is

1−
∫ 1

0

(1− p)2

(1− p+ pq)2
dq = 1− (1− p)2

p

[
1

1− p+ pq

]1

0

= p.

Iterative decoding will succeed if and only if the two curves do not cross. In order for
the two curves not to cross, the sum of these two areas must be less than the area of the
EXIT chart; i.e.,

1

3
+ p < 1,

which is equivalent to p < 2
3
; i.e., the capacity 1− p of the BEC, namely 1− p, must be

greater than the rate of the RA code, namely 1
3
.

(For example, in Figure 4 below, the area above the top curve is 1
3
, whereas the area

below the bottom curve is 1
2
.)

(f) The two curves given in parts (c) and (d) are plotted in the EXIT chart below for
p = 0.5. Show that iterative decoding succeeds in this case.

1 qr→` 0
1

q`→r

0.75

0
p = 0.5

Figure 3. EXIT chart for iterative decoding of a rate-1
3

RA code on a BEC with p = 0.5.

The two curves do not cross, so iterative decoding starting at (qr→`, q`→r) = (1, 1) must
succeed (reach (qr→`, q`→r) = (0, 0)).
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(g) [Optional; extra credit.] Determine whether or not iterative decoding succeeds for
p = 0.6.

The easiest way to determine whether iterative decoding succeeds for p = 0.6 is to simulate
it using the equations above. We obtain

q`→r qr→`
1.0 0.84
0.706 0.764
0.584 0.716
0.512 0.680
0.463 0.652
0.425 0.627
0.393 0.604
0.365 0.582
0.339 0.561
0.314 0.538
0.290 0.514
0.264 0.487
0.237 0.456
0.208 0.419
0.176 0.373
0.139 0.316
0.100 0.244
0.059 0.157
0.025 0.070
0.005 0.015
0.000 0.001
. . . . . .

Thus iterative decoding succeeds fairly easily for p = 0.6, even though the capacity of a
BEC with p = 0.6 is only 0.4, not much greater than the rate of the RA code.

It is possible therefore that irregular RA codes may be capacity-approaching for the BEC.
Even with regular codes, the two EXIT curves are already quite well matched. However,
note that only the left degrees can be made irregular, which limits design flexibility.
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Problem F.3 (40 points)

For each of the propositions below, state whether the proposition is true or false, and give
a proof of not more than a few sentences, or a counterexample. No credit will be given
for a correct answer without an adequate explanation.

(a) The Euclidean image of an (n, k, d) binary linear block code is an orthogonal signal
set if and only if k = log2 n and d = n/2.

False. The Euclidean images of two binary words are orthogonal if and only if d = n/2,
so all codewords must be at distance d = n/2 from each other. In a linear code, this
happens if and only if all nonzero codewords have weight d = n/2. However, all that is
specified is that the minimum distance is d = n/2, which is necessary but not sufficient.
The smallest counterexample is a (4, 2, 2) code; e.g., {0000, 1100, 0011, 1111}.
(b) If a possibly catastrophic binary rate-1/n linear convolutional code with polynomial
encoder g(D) is terminated to a block code Cµ = {u(D)g(D) | deg u(D) < µ}, then a set
of µ shifts {Dkg(D) | 0 ≤ k < µ} of g(D) is a trellis-oriented generator matrix for Cµ.

True. The µ shifts G = {Dkg(D) | 0 ≤ k < µ} form a set of generators for Cµ,
since every codeword may be written as

∑µ−1
0 uk(D

kg(D)) for some binary µ-tuple
(u0, u1, . . . , uµ−1). If the starting and ending times of g(D) occur during n-tuple times
del g(D) and deg g(D), respectively, then the starting time of Dkg(D) occurs during n-
tuple time del g(D) + k, and its ending time occurs during n-tuple time k + deg g(D).
Thus the starting times of all generators are distinct, and so are all ending times, so the
set G is trellis-oriented.

(c) Suppose that a codeword y = (y1, y2, . . . , yn) in some code C is sent over a memoryless
channel, such that the probability of an output r = (r1, r2, . . . , rn) is given by p(r | y) =∏n

1 p(ri | yi). Then the a posteriori probability p(Y1 = y1, Y2 = y2 | r) is given by

p(Y1 = y1, Y2 = y2 | r) ∝ p(Y1 = y1 | r1)p(Y2 = y2 | r2)p(Y1 = y1, Y2 = y2 | r3, . . . , rn).

True. This may be viewed as an instance of Equation (12.6) of the course notes, where
we take (Y1, Y2) as a single symbol variable. Alternatively, this equation may be derived
from first principles. We have

p(Y1 = y1, Y2 = y2 | r) =
∑

y∈C(y1,y2)

p(y | r) ∝
∑

y∈C(y1,y2)

p(r | y) =
∑

y∈C(y1,y2)

∏

i∈I
p(ri | yi),

where C(y1, y2) denotes the subset of codewords with Y1 = y1, Y2 = y2. We may factor
p(r1 | y1)p(r2 | y2) out of every term on the right, yielding

p(Yi = yi | r) ∝ p(r1 | y1)p(r2 | y2)


 ∑

y∈C(y1,y2)

n∏

i=3

p(ri | yi)


 .

But now by Bayes’ rule p(Y1 = y1 | r1) ∝ p(r1 | y1), p(Y2 = y2 | r2) ∝ p(r2 | y2)
(assuming equiprobable symbols), and we recognize that the last term is proportional to
the a posteriori probability p(Y1 = y1, Y2 = y2 | r3, . . . , rn).
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(d) Let C be the binary block code whose normal graph is shown in the figure below. All
left constraints are repetition constraints and have the same degree dλ (not counting the
dongle); all right constraints have the same degree dρ and are given by a binary linear
(dρ, κdρ) constraint code Cc. Assuming that all constraints are independent, the rate of C
is

R = 1− dλ(1− κ).
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Figure 5. Normal graph realization of C, with left repetition constraints of degree dλ
and right constraint codes Cc of degree dρ.

True. First, if the length of C is n, then there are n left constraints and ndλ left edges.
If there are m right constraints, then there are mdρ right edges, which must equal the
number of left edges. Thus m = ndλ/dρ.

Second, each constraint code Cc consists of the set of all binary dρ-tuples that satisfy a
set of (1 − κ)dρ parity-check equations. Thus C is equivalent to a regular LDPC code
of length n with m(1 − κ)dρ = ndλ(1 − κ) parity checks. Assuming that all checks are
independent, the rate of such a code is

R = 1− ndλ(1− κ)

n
= 1− dλ(1− κ).
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