
MITOCW | 16ocw-6-451_4-261-06apr2005-220k_512kb-mp4

[WRITING ON CHALKBOARD]

PROFESSOR: Good morning. I think I'll start even though people are not quite all here, because

it's time.

Sorry, I'd hoped to start Chapter 10 last time, but we'll start it this time. When Ashish

comes, we'll have handouts for Chapter 10, the new problem set and the old

problem set solutions as usual.

This chapter is about trellis diagrams for block codes. Binary linear block codes of

the kind that we've seen before, it's actually a much more general notion that

applies to -- well, linearity is important, although we don't see it very specifically in

the trellis diagram. But we'll see that for constructing a unique minimal trellis,

linearity is an important aspect. Or more generally, it's just the group property of

codes that allows us to construct unique minimal trellis diagrams.

And I think it's best to motivate this chapter by an example. Here's a nice example

of a code that we know very well. It has a nice trellis diagram. It's the 8, 4, 4 Reed-

Muller code. Just to remind you of how we construct this code, or one of the

methods. We have many methods. We take this kind of universal eight by eight --

well, it's a list of eight tuples. And it's the tensor product of this little matrix three

times.

And if we create this, we get a matrix that looks like that. And we just pick the rows

that have weight four or greater, and they are the generators of the 8, 4, 4 Reed-

Muller code. So we'll take those as our set of generators. It's the 16 code words

generated by these four generators here. This goes back to the first part of the

term, but I hope you recall that fairly quickly.

Now I'd like to draw a trellis diagram for this code. I don't particularly know why yet.

One idea I might have in mind is to do a Viterbi algorithm decoding as a maximum

likelihood decoding algorithm for this code.

1



So let's see if I can come up with an efficient trellis diagram. That means one that

first of all has really few states in it. Relatively few branches would be efficient as a

decoding map for the Viterbi algorithm. And here's a very nice one. This looks sort

of like a rate 1/2 four-state trellis diagram. Of course, it's not time-invariant, doesn't

go on forever like for a convolutional code, for a block code. Block code only exists

over a finite time. So we're going to get a block trellis that starts at a particular time,

that ends at a particular time in a single state.

But we want the basic property that the -- the paths in this trellis are in one-to-one

correspondence with the words in the code. So, how many words are there in the

code? There are 16 in this code. How many paths are there through this trellis?

Well, again it has a very regular structure. There is a four-way branch here.

Wherever you get to, you have a two-way branch here. You have a two-way branch

here. You have no choice here. So there are 16 possible ways to get through this

trellis, 16 trajectories if you like.

And next let's check if they correspond to all the possible code words. Here is the all

0 code word up here. What's next? Let's check for the generators. Here is one of

the generators, 1, 1, 1, 1, 0, 0, 0, 0. And it's a 1, 1, 0, 0. This is 1, 1 also. 1, 1 -- no,

I'm sorry. 1, 1, 0, 0, 1, 1, 0, 0. That's right. That's this one going through here. And

1, 0, 1, 0, 1, 0, 1, 0. That's here. And what's the last one? All ones. Well, that's up

here too. The all one path. Yeah.

AUDIENCE: How did you know whether to make the [INAUDIBLE] procedure?

PROFESSOR: I had side information. A genie told me. I know that this is an efficient trellis. Where

we'll get to, and I hope today in this lecture, is a turn-the-crank method of

constructing not only a trellis, but the minimal possible trellis. So you'll be able to

see how starting from a set of four generators like this, turn the crank, and I'll

produce a trellis for you. But of course you don't see that yet.

I just know that this is a trellis, and it's a nice trellis. It has nice, regular structure.

You could decode this with a Viterbi algorithm, and you could see the complexity

would be comparable to the complexity of decoding a rate 1/2 four-state

2



convolutional code. And in fact, you remember I compared our example rate 1/2

four-state convolutional code which had a coding gain of 4 dB with this code saying

they roughly have the same complexity.

And when I said that, this is what I had in mind, that I could decode each of them

with a Viterbi algorithm with approximately the same amount of complexity. And

unfortunately this only has a nominal coding gain of 3 dB, and an effective coding

gain of slightly less than that. So it's not quite as good as the convolutional code.

And at the end of the day, we're going to find out that that's kind of typical of a

comparison between block and convolutional codes of the same trellis complexity.

But on the other hand, this is certainly a better way to decode this code, recursive

by the Viterbi algorithm, than to do a full maximum likelihood decoding of all 16 code

words, which involves just brute force computing the distance to 16 code words.

This is if you like a more organized way of performing the computation of how far is

the receive sequence from each of the 16 code words.

So the reason we look for trellises of block codes is first of all, it's better than

exhaustive maximum likelihood decoding. It is a maximum likelihood decoding

algorithm since we're going to find that we can construct a trellis for any linear block

code, which at worst, it's never going to be more complicated than just enumerating

all the code words and doing exhaustive maximum likelihood decoding. And usually,

as in this case, it's going to be a more efficient method of doing maximum likelihood

decoding. So we will have a general method of maximum likelihood decoding that is

more efficient than the exhaustive method.

Secondly, there's an interesting link to system theory. I won't make a great deal of

this in this course. But what are we really doing here? We're representing a block

code as a finite state system. In fact, a linear block code is a finite state linear

system, although again the linearity is not terribly transparent from this picture. So

we have a linear finite state system, just as we did for the convolutional code.

However, it's necessarily time varying. It couldn't possibly be shift invariant because

we only have a finite time axis, if you like. Time axis only goes over four time units in

3



this particular picture, where I've grouped two outputs at a time.

So that's interesting, and for our purposes an interesting aspect of this is that we

now get a notion of how complex is a block code. So far we've been focused on

parameters like n, k, d, which are all algebraic parameters of the code itself. But we

really want to know about performance versus complexity.

So how complex is the 8 4 4 code? Well, now we have a little bit of a handle on it.

We can say its complexity is that of a four-state machine. So trellis complexity gives

us a measure of the complexity of a block code so that we can, for instance, say the

Reed-Muller codes tend to be less complex than PCH codes. And I'll try to give

some substance to that as we go along. So we get additional parameters that have

more to do with what we really care about, which is decoding complexity.

And finally, I introduce this subject because it's a stepping stone to where we're

really going, is this notion of codes on graphs, which is the underlying concept for

the capacity-approaching codes that is our goal point. Our whole goal in this course

is to get to capacity, specifically on the additive white Gaussian noise channel. And

the way that people have found they get to capacity turbo codes, low-density parity

check codes, the underlying concept that I'm going to be framing that in is codes on

graphs. And this is kind of a code on a very elementary graph. So it's a good way

from here to there.

So that's why we're taking a little time to look at this subject. Even though as I say,

at the end of the day, even though there's a better way of decoding block codes

than the ways we've had previously, and a better non-algebraic way, it still is not

going to turn out to be as good as convolutional codes, which we already know

about.

Any questions on what we're doing, motivation and so forth? Yeah.

AUDIENCE: [INAUDIBLE] convolutional codes is that each node doesn't have two things coming

on to it?

PROFESSOR: That's right, it's a little bit more irregular, and this trellis section doesn't look the

4



same. We had a completely mixing trellis section for the convolutional code. This

kind of divides it into two halves which don't meet. This basically expresses the code

as a certain subcode, and its coset is down here. So, it's not quite the same. Looks

different. Maybe this will turn out to be interesting. Good observation. Anything else

at this point?

AUDIENCE: You just said that this is not a convolutional code. Or maybe we can have more than

one states, and it is a convolutional code.

PROFESSOR: Let's see, it's not a convolutional code. It's not even a terminated convolutional

code, because it doesn't have the simple shift register type of trellis diagram. At

least it's not the kind of convolutional code we know about. But why should it be?

Let's open up our minds to more possibilities.

We don't really care. The objective that we have in mind here is we're just going to

try to come up with the most efficient trellis picture that we can for block code. And

we're going to use the linearity, and we're going to basically try to find as few states

as possible at each time. That's going to be our measure of efficiency. That's not

the only one you could think of, but it'll turn out that any notion of efficient

representation comes down to the same thing. So we'll focus on a minimal state

representation of a block code, and you can think of this as an exercise in system

theory and minimal realizations of a linear system.

This you can view. A set of all 16 code words you can view is the set of possible

trajectories of a linear system on a time axis of length 8, and we want to find a

minimal realization, minimal state realization of that linear system. So that'll make

sense to some of you, and it won't make an awful lot of sense to the rest of you.

So we're after a minimal, in the state sense, minimal state complexity, let's say. And

let's continue to focus on this example, and let's focus on a particular time. Let's

focus on the halfway point here. Where do the state times occur, by the way? They

occur between the symbol tags. You can think of a state as being associated with a

cut between a certain set of symbols which we call the past and another set of

symbols which we call the future, again using just some theoretic temporal

5



language.

So if we make a cut -- let's say I do it over here. States are based on cuts between

a past and a future, so the state actually occurs between the fourth and the fifth

symbol here, not at either of them, if you want to draw where is the stated time. And

let's start with this example. And let's ask if we could find any simpler trellis for this.

In other words, let's see if we can have fewer than four states at this midpoint.

Could we possibly have fewer than four states at the midpoint? What's the key

property of states? The key property of states is that once you get to a state, that

then becomes a summary of all the history that you know about the past, and any

past sequence or partial sequence that gets you to this state has to have the same

set of possible continuations over here in the future in order for this to be a valid

trellis representation.

So maybe it will help if I draw this just focusing on the central time. There are two

ways to get to this central time. One is to get to what we call the 0 state. We can get

there by 0, 0, 0, 0 or 1, 1, 1, 1. There's a second state which we can get to again by

two paths, which are 0, 0, 1, 1 or 1, 1, 0, 0. There's a third one, which we can get to

by 1, 0, 1, 0 or its complement, 0, 1, 0, 1. We'll see that each of these involves a

four-tuple and its complement. And this is 1, 0, 0, 1 or 0, 1, 1, 0.

Those are the set of possible past sequences that can get to any of these four

states. There are two of them.

Now what this trellis says is that from this state, regardless of how we got here,

either of these two things, there are two possible continuations, which happen to be

the same thing. And the property state has to be that either of these continuations is

a legitimate continuation of either of the paths that it takes to get there. So we now

have four possible code words that go through this particular state, that pass

through this state.

And down here, similarly, I think what we have is the same set of code words.

There's complete symmetry and so forth. Let's ask, could we combine these two

6



states, somehow smush them together into a single state? And the answer is

obviously no, because 0, 0, 1, 1 is not a continuation of the all 0 sequence, or of the

all 1 sequence. And 0, 0, 0, 0 is not a continuation of the 0, 0, 1, 1 sequence or the

1, 1, 0, 0 sequence.

The property of the state is the Markov property. And there are many ways of

phrasing this, but this is the defining property of states, is that if two past paths have

a future continuation -- I hope you understand this language as I introduce it -- in

common, then all their future continuations are in common.

So I have two past paths, let's say. This is the definition of states. If we can find

such a situation, then we can say that these two past paths go through the same

state at the cut time, because then we can smush them together. You can think of

this as our starting from, but suppose we drew all 16 code words, and we drew a --

here would be a 16 state trellis, and the first two elements of it might be 0, 0, 0, 1, 1,

1, 1, 1, 1, 1, 1.

And we'd ask, can we smush these two states together? And the answer is yes

because of this property, because 0, 0, 0 can also be followed by 1, 1, 1, 1. There

are actually four states that we're smushing together here. 1, 1, 1, 1 and 0, 0, 0.

These are all legitimate code words, and because they're all legitimate, we can

basically break this up into a Cartesian product of two paths with two futures, and

represent all four of them by a single state. So that's what states do.

If we want a minimal state diagram, we should do this as much as possible. It's not

very well-defined right now, but we should merge states wherever this property

holds. So this implies they go through a common state, and it's if and only if.

So you could see it very concretely from the trellis diagram. This is the property that

we need. You can see that for this particular code, we do have the possibility of

combining all 16 possible states here into 4, because we can combine them all pair-

wise in this way. This is going to come from the linear property of the code. That's

why everything is so symmetric. But we can't go any further than that.

7



So we can conclude from this is that for the 8, 4, 4 code, the minimal state space at

the center has four states, has size four. For simple code like this, you can simply

see what all the possibilities are, and this is the best we can do.

So do you get that? This is fundamental system theory state realization theory. I

don't know where in the curriculum one gets this nowadays. Probably somewhere

over towards the control side, maybe in digital signal processing, but maybe not. But

we're doing system theory here. We all get that? Yeah.

AUDIENCE: [INAUDIBLE] properties basically defined, I have two possible paths, and they have

one common [INAUDIBLE] data, they have [INAUDIBLE]

PROFESSOR: Yeah, if they go through a common state, that implies this statement. Conversely, if

we have a set of past paths and future paths that have this property, then we can

define a state. In other words, states are always going to look something like this,

with a set of past paths. We have a set of future paths, and the state is simply a

node that they go through such that you can combine any of these paths with any of

these futures. If it's symmetric, you could say the same thing. If two futures have a

past in common, then they have all their paths in common.

But whenever you have a state representation -- let's suppose we have three states

there. Then this is what, just looking at those states and the initial and final states,

this is what the code is going to have to look like. Because property of state is that

however you got there, you have to be able to take any of these over here.

Otherwise the trellis is invalid. If not all of these nine sequences are code words,

then it's not a valid trellis representation, or equivalently, it's not a valid state

representation.

So if, and only if, we can draw the thing in this way, we get it. So for a small code,

you can just see how much combining you can do. In particular, you can ask, what

can the 0, 0 state -- 0, 0 path sequence -- what can that be combined with? Well, it

can only be combined with sequences that have a 0 first part.

So let me introduce now the idea of subcodes. We have a linear code C. Let's

8



define an interval on the time axis: k, k prime, whatever. The subcode C on that

interval is the set of all code words. Elegant way to say it is whose support is in k, k

prime.

In other words, which are all 0 outside, which have all 0 symbols outside of this

interval that we've identified. So that's just notation. So specifically, let's say the past

code with respect to a certain time, like the midpoint there. Well, we can define that

as the set of all code words that are 0 outside the past, the first four symbols, and

we define the future subcode as the set of all code words that are 0 outside the

future.

For this code, what is that? We list the 16 code words. We make this the past. We

make this the future. What is the past subcode here? In this particular case, the

past subcode is, of course, the all 0 sequence. It was always in this code or this

sequence, 1, 1, 1, 0, 0, 0. It's a linear code of dimension one, and it consists of

these two code words.

It is precisely the set of all code words that can be followed by the all 0 sequence.

So I can read it directly off of this trellis picture here. So everybody with me? The

past subcode just consists of those two words. The future subcode consists

similarly. Looking at the trellis, it's the 1's that are all 0 outside the future. In other

words, can follow a past which is all 0. In other words, it's these two code words.

So here are two little subcodes with a code. So by definition, this is subcode of C. If

C is linear, you can quickly convince yourself this is a linear subcode, so it's going to

have a certain dimension. It's going to have size equal to a power of two. It's even

going to have a minimum distance that is at least as great as the minimum distance

of C, because it consists of code words of C, so its minimum non-zero weight is

going to be at least as great as that of C. So it has some properties immediately.

These past and future codes seem to have a lot to do with the structure of the trellis

up here. In fact, the zero state consists of precisely -- the sequences that go

through the zero state here are not coincidentally the set of all past code words in

Cp followed by the set of all future code words in Cf.

9



And why is that? It's because the set of all ways of getting to here, getting to this

state, have to be the set of all code sequences that can be followed by the all 0

sequence. Similarly, the set of all continuations from this state have to be the set of

all continuations of the all 0 sequence.

So the zero state is always going to be a little sub-trellis that is going to represent in

effect -- you can draw it as a sum, or a product, of the past and future subcodes. In

other words, there's a two-dimensional code that has these two generators. g1, g2

generates a little two-dimensional code. Here's the fourth code word in it, the all 1

code sequence. And every element in that two-dimensional code goes through the

zero state.

AUDIENCE: [INAUDIBLE] code word. So then you know --

PROFESSOR: It's whatever it happens to be.

AUDIENCE: Then you have a separate state just for -- you could combine them.

PROFESSOR: It doesn't matter. Suppose that Cp has dimension one. Cf has dimension one. That

means Cp is going to be something like this. Cf is going to be something like this.

Whatever, what way.

AUDIENCE: [INAUDIBLE]

PROFESSOR: It just follows from linearity. And clearly, since C itself was linear, we're allowed to

add x, x, x, x all 0's to y, y, y, y. That's a code word, because these were both code

words in C. So the linearity allows you to fill in this fourth corner of the rectangle, if

you like.

So Cp plus Cf is always going to look like this. And we'll always call this the zero

state, the state that you get to by the all 0 sequence. And that can be followed by

the all 0 sequence. That's always going to be called the zero state. By linearity, it's

always going to look like that. It might not be dimension one. It could have any

dimension here.

10



So we're really beginning to get somewhere now. What do all these other states

look like, grouped theoretically? Cosets. Somebody -- who said cosets? Good, that's

right.

So Cp plus Cf is itself a subcode of C, a two-dimensional subcode. So there are four

cosets of Cp plus Cf in C, and we'll see if they correspond to the four states.

So how do we do this algebraically? Let's draw a generator matrix for C in a certain

form. Again, I'll draw the past, the future. So that's the only division I'm concerned

with right now. And let me draw it in general form first. I've defined this past

subcode, Cp, at a certain dimension, so it has a certain number of generators. So

we're going to put up here a set of generators for Cp, g of Cp, however many there

happen to be.

And what's their common characteristic? They all are all 0 in the future. So they're

all going to look like that. Then I'm going to take a set of generators of Cf, and

similarly I'm going to use them up over there. These are all code words, and they're

clearly linear and independent of those. So I'm on my way to constructing a

generator matrix for C.

But obviously I'm going to need some more. We can call this the number of

generators in the past, the number of generators in the future. This is the dimension

of Cp. This is the dimension of Cf. And now I need some more generators, which by

definition are going to have to span both past and future.

Let's see. Since I've already introduced the coset language, let me just mysteriously

put that as the generators of a quotient group. C mod Cp and Cf is what that

means, and it's a quotient group, if you know or recall what a quotient group is. But

anyway, there are k minus kp minus kf of these. And I don't particularly care what I

put down in here. Their property is that they have to span both past and future.

So for our particular example, here's the generator for the 8, 4, 4 code. What we're

talking about is a generator that looks like 1, 1, 1, 1. That's k past is 1. 0, 0, 0, 1, 1,

1, 1. k future is 1. They're both one-dimensional codes.

11



Now I need two other generators, which must span past and future. So what'll I

take? Let me just take two more. 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0. That

would be one possible choice. And so this is k minus kp minus kf, which is 2.

What I'm going to claim is that I'm going to need a state for every possible linear

combination of these generators. So claim -- well, let me break it down into more

logical sequence. Every code word in C can be written as some linear combination

of the generators. What does that amount to? It amounts to a certain code word in

the past code plus a certain component in the future code, either all 0 or they're all

one, plus -- let me call this the state code, S, as I do in the notes.

So in this case we have a two-dimensional state code. Its elements are eight-tuples.

It's just a subcode of the code we started with, so it's not quite clear how it

corresponds to states yet. Well, let me just call that S for state sequence.

And I claim I can break this up because the proof is that for every c in C is equal to

a sum of -- it's a linear combination of the generators. So I just break that up into

the three possible parts. So I get one part that's in the past subcode, one part's in

the future subcode, and one is in the state. So this is the past, this is the future, this

is the state. So I just break it up according to this. So the 16 code words can all be

written in this way in our particular example.

So let's project this code word on the past. What does projection mean? It means

you just don't look at the part that's in the future. So we're looking at four-tuples

now. So C projected on to the past, this is the part that lives over here. It is equal to

-- well, if I project the past code word on the past, I basically get the past code word

again. Let me write it like that, but it's a little bit redundant.

Incidental comment: I can regard this past subcode as either an 8 1 4 code, but

what is it really? It doesn't live out here. It's support is on these four. It's really a 4 1

4 repetition code that lives on the past. It's support is the past. Similarly, the support

here is the future, and it's effectively a 4 1 4 repetition code for our example.

But formally, if we project this on the past, it's a one-to-one projection. What

12



happens to the future part? This disappears, because the projection of anything in

the future code on the past is all 0 by definition. Plus, it's the projection of the state

sequence on the past.

Could the projection of the state sequence on the past be all 0? This is actually an

important point. Could the the projection of any linear combination of these

generators down here be all 0 in the past?

The answer is no by the definition of the future subcode. If I found a linear

combination of this that was all 0 in the past, I should add that to the generators of

the future subcode. So by defining this in this way, I've forced this to be nonzero,

unless, of course, the state sequence itself was 0. The all 0 sequence is in the state

code. So this is nonzero if S is nonzero.

And similarly, if I project a code word on the future, I get -- this becomes all 0. I get

the element of the future code projected on the future, plus the state on the future,

the state projected on the future.

And now I claim further that this means I can draw a trellis as follows. Start from

here. For the all 0 sequence, I'll have a bunch of parallel paths going to the zero

state that together add up to the past subcode. These are precise. One of these is

going to be all 0, and these are precisely the ones over here that can be followed by

all 0, as I've already claimed. So these are the ones that can be followed by 0, and

similarly over here I'm going to put all the future subcode.

I will say these correspond to the state sequence 0. These are the ones where if I

put 0 coefficients down here, I just get linear combinations of the past subcode and

the future subcode. I'm going to write those as going through all one trellis state.

And I believe I've already made the argument that this state at least is legitimate,

that every combination of something in the past subcode with something in the

future subcode is a code word. This is simply just Cp plus Cf, what I wrote before.

So I've got one state that represents all of Cp plus Cf.

And now let's take another typical state down here. We'll say this state corresponds

13



to the state sequence S, or S is a general state sequence. Think of it as being

nonzero. And what am I going to put on that? I'm going to put Cp plus this state

sequence projected on the past. And that way I'll get all past projections that are of

this form for a specific S projected on the past, allowing this to vary through the past

subcode.

And similarly over here, I will let the set of all these trellis branches be Cf plus the

state projected on the future. So all the things that go through this state here will be

Cp plus Cf plus this particular state sequence. So for each of the state sequences, I

claim I can define a state. So it's the set of all past continuations of anything that

projects on the past as anything in the past subcode plus a past projection of the

state sequence can be combined with anything in the future, Cf plus the future

continuation of the state sequence.

One of these is simply the past projection of the state sequence plus the future

projection of the state sequence. And this is S, and by construction this is a code

word in the code. Now by linearity I can add any past code word to this past

projection. And that's a code word, so any of these elements plus Sf, continued by

Sf, the future projection is a code word. See, there we're taking something

generated by Cp and the state code. And similarly, anything by here comes out

here.

So I think I've left one or two details undone, but are you convinced that I can define

a state in this way such that all of these pasts can be followed by all these futures,

and they're code words? In fact, they correspond to this subset of elements of the

code.

We have examples of it up here. For instance, 0, 0, 1, 1. Or let's see. Let's take a

past protection, 1, 1, 0, 0. Here's a typical state sequence, 1, 1, 0, 0, 1, 1, 0, 0. And

I can add to this anything in the past, so I get 0, 0, 1, 1, 1, 1, 0, 0. I can add to it any

of these two, anything in the future. So I get 1, 1, 0, 0, 0, 0, 1, 1 and 0, 0, 1, 1, 0, 0,

1, 1. And I claim that all four of these have the state projected on the past equals 1,

1, 0, 0. The state projected on the future is 1, 1, 0, 0.

14



And that any of these pasts can be followed by any of these futures. So this is C

past plus C future plus 1, 1, 0, 0, 1, 1, 0, 0. That is the claim.

And furthermore, if I go through this, dot dot dot, I'm going to generate everything in

C. So this is the partition of C -- into what? S cosets of Cp plus Cf, subcode of C. So

algebraically, that's what's going on.

But having done this partition, at least with respect to this state space, I can create

something which has S states the size of S, which is -- what is this? The dimension

of S is the dimension of C minus the dimension of Cp minus the dimension of Cf.

So I've argued that I can get a state space with this dimension. It's a linear state

space, and it has a certain dimension, which is just the dimension of C minus the

dimension of the past subcode minus the dimension of the future subcode. It's the

number of generators that I need for S. So in the example, I need two generators

for S, so I get a state space of dimension two, or size four. It's just a vector space

over F2 in this case.

You all with me? I think you are. I don't see any great puzzles.

So I can get at least these few states. Could I get any fewer? Can I possibly merge

any two of these states? Could I draw a trellis in which, say, I've mushed the zero

state together with one of these nonzero states?

And the answer to that is clearly no by the definition of the past and the future

subcodes. These are all of the future sequences that can follow the all 0 past

sequence. There can't be any more down here, so we can't possibly mush them

together.

And similarly, just by going through this, if you can't take the past part of one state

and combine it with a future part of another state sequence, because that clearly is

not in the code. And I don't have a slick proof of that in mind at the moment, but

there is one in the notes.

The conclusion from this is what I call the state space theorem. Given code C, any

15



partition of the time axis, the total index set, into past and future, I can do this not

just at the midpoint. I can do this any point along the code that I want to, any

partition into past and future. The minimal -- we get a linear state space, in other

words a vector space, S. And the dimension of S is equal to the dimension of C

minus the dimension of this past subcode minus the dimension of the future

subcode. So we can simply calculate what the minimal dimension of a state space is

at any point along here.

So for instance, at this point here, what's the minimal size of a state space? What's

the past subcode here? What's the set of all code sequences that are all 0 in the

future, as we have all 0's out here? This point, Cp, is just 0, 0. It just has dimension

0. Yeah, 0

What's the future subcode? This is the subcode which has support all out here. This

is anything that starts with 0, 0. This is 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1. Let me just write

down generators. 1, 1, 1, 1, 0, 0. So there is -- this is dimension Cp equals 0.

Dimension Cf equals 2. And so the minimum size of the state space is 4 minus 2.

That's again 2.

AUDIENCE: Does this mean that [INAUDIBLE] each state's the number of states is the same?

PROFESSOR: Certainly not true in general. Let me ask about time three. Can certainly do that.

Time three, what's the past subcode? This is the code words that have support on

the first three symbols. Again, that has to have dimension 0, because the minimum

weight of this code is 4. So there can't be anything that just looks like 1,1,1 and then

five 0's

What is the future subcode for that? Now the only generator of the future subcode is

0, 1, 1, 1, 1. We have to go this far, and then it's what futures can we get from

here? There are only two words that are in the future. So in that case we have

dimension past is 0. Dimension future is 1.

So if we drew a state space here, we would have to have eight states. In fact, I can

do that if I just draw a little state in the middle of each of these lines. I get now a

16



trellis picture which has an explicit state at this third time here, but it has eight

states.

Oo ugly, so I've masked that. I've suppressed that by this nice little four-state trellis.

But yeah, if you insisted on drawing a state space at time three, it would have eight

states in it. We'll get back to that when I get to this turn-the-crank procedure, if I do,

of getting to minimal trellises.

So what have we done? We've established that there is a uniquely defined minimal

state space size for any partition between past and future. In other words, if there's

any time where you want to make a cut in the time axis between past and future,

you can define what the minimal state space size is.

And now you might ask the question, can we simultaneously achieve minimal state

spaces at all times? In other words, can we draw a single trellis which gets the

minimal state space at each time?

We haven't proved that there is. It might be that if you push in the state space at

one time, it forces the state space to balloon out at another time. And in fact, for

nonlinear codes, that is typically what happens. But for linear codes, a minor miracle

occurs. And the answer is yes.

So how am I going to prove that? I'm going to prove it via this very handy tool, which

is also a construction tool which is called a trellis-oriented, or a little bit more

formally, a minimum span generator matrix.

The idea here is, given a generator matrix, reduce to trellis-oriented form. We're

going to prove that this is unique, or effectively unique, and specifies minimal trellis

at all times in a certain way.

Let's start again. So loosely, what is a trellis-oriented generator matrix? Well, if we

have a generator, say 0, 0, 1, 1, 1, 1, 0, 0, its span is this interval from its starting

time to its ending time. It's this. We say it starts at time 3, it ends at time 6, the span

is the interval 3 to 6 in this case.

17



So we think of this as not being active before time 3. At time 3 we get the first

interesting thing happens. A 1 comes up, but then goes through something. These

don't have to all be ones. It could be 1, 1, 0, 1. Then there's a last 1 at some point,

and then it quiets down, and it's dead again.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Yes. Except I'm not sure. Would you say the support of this was 3, 4, and 6, or

would you say it was the interval from 3 to 6? I don't know. What's the definition of

support?

AUDIENCE: I don't know it.

PROFESSOR: I'm not sure I know. It's probably been defined both ways in different literatures. So

I'll call it a span, but it's roughly the support of the interesting part.

So that's the definition of span. And what a trellis-oriented general matrix is, a

minimal-span matrix, meaning all generators have a short a span as possible. I'll

just say, are as short as possible. This is a lecture. I can be loose. Now it's not even

clear that's well-defined yet.

But let me again give you an example, and show you how to find a trellis-oriented

generating matrix just by example. Let me take our example here, 1, 1, 0, 0, 1, 1, 0,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1.

So there is a generator matrix that's not in trellis-oriented form. In particular, I can

see that by adding this to this, I can make this generator have shorter span. I can

replace it by one, which is four 0's and then four 1's, which we've already found

useful in constructing a trellis. But let me proceed through it more systematically.

How can I make -- this generator generates all words in the code. So how can I find

a set of linearly independent generators that has shorter span?

There's the sort of greedy way of proceeding. Let's take the first two generators.

Can I combine these to find anything that has a shorter span, that I can replace one

of the generators with? Anybody?

18



AUDIENCE: No.

PROFESSOR: No, I can't. That's not the answer I expected to hear.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Let's identify what the spans of these are. That has a span of four. That has a span

of six. That has a span of seven. This has a span of eight. What I'm trying to do is to

reduce that.

AUDIENCE: [INAUDIBLE]

PROFESSOR: So if I add the first two, that seems like a good thing to do, because then I get 0, 0,

1, 1, and I've reduced the span of that generator.

Any way I can combine these two to reduce the span? Obviously not, because the

span of this is completely included in the span of this. If I add these two together,

then I'll get something which still starts here and ends here. Why was I able to

reduce the span here? Because the spans had the same starting time, so I got a

cancellation of the first bit. I got a 0 up here. That's what I wanted.

So that's the key to proceeding. If I see any place, any two that have the same

starting time, then I can add them together, and the result will be something that

has a shorter span than at least one of them. So let me do that. I see two here that

have the same starting time, and so I add that to that, and I get 0 1 0 1. So I've got

the span down to here. I can do that down here. And I get this, which is a very nice

reduction in span.

Can I go any further? I can clearly look for the same thing in ending times, if I could

find two ending times that were the same. I could do the same trick, add those two

generators together, and the result would be something that was shorter than at

least one of the component generators. But here are my starting times, here, here,

here, and here. They're all different. So I have no possibility for combining two and

getting a better starting time.

19



Similarly, the ending times are here, here, and here. They're all different. So I'm

done.

So, that's how you find a trellis-oriented generator matrix. And there's a closely

associated theorem, which is that a generator matrix g is trellis-oriented if, and only

if, all starting times differ, all ending terms differ.

Yeah?

AUDIENCE: What's the definition of all generators as short as possible?

PROFESSOR: I'm now making it. This is really just motivation. So this can be my actual definition of

a trellis-oriented generator matrix, which I've proved this theorem. It's a matrix in

which all the starting times are different, and all the ending times are different. And

what I've achieved is that all generators are as short as possible.

How would I go about proving the theorem? Suppose I have a matrix that's not in

this form. And I've already proved that I can shorten the generators. So if it's not in

this form, it's not trellis-oriented. The generators are not as short as possible.

So all I need to do is prove the other side. Suppose it is in this form. Then could I

possibly find shorter generators? And the proof of that is basically the following

lemma, that the subcode C, take any interval kk prime. So given a trellis-oriented

generating matrix, namely one that satisfies these conditions, then the subcode

consisting of all the code words who have support on this interval is generated by

the gj in G that have support in kk prime.

And that's kind of intuitive and obvious. On the one hand, it's clear that any linear

combination of these generators is a code word in the subcode. Obviously they all

have support in this interval. I can't generate anything that has support outside that

interval by linear combinations.

So the only question is, can I possibly get anything that's in the subcode by

combining with a generator that is outside this interval? And again, it's clear that say

I take kk prime to be here, if all the starting times are different, and all the ending

20



times are different, and I start to add generators that are outside here, I can't

possibly get cancellation of the starting time, or I can't possibly get cancellation of

the ending time. So I'm going to wind up with a code word which has support

outside the interval. So, it really is a simple lemma.

AUDIENCE: [INAUDIBLE] have the all 0 code word?

PROFESSOR: Excuse me?

AUDIENCE: The all 0 word will be part of the subcode.

PROFESSOR: The all 0 word is always part of the subcode.

AUDIENCE: [INAUDIBLE] who has something outside this interval. Then when you add that with

the all 0 one, you would get something that does not belong to the subcode,

[INAUDIBLE]

PROFESSOR: Right, but I have to ask if there's any code word. So I have to consider all the code

words, really. But I'm saying if I have a code word C that is sum of the generators,

and I have a nonzero coefficient here on any generator that has starting time

outside this interval or ending time outside this interval, then I can't possibly get

cancellation of that nonzero thing. And so if it really requires this to be nonzero, and

then I'm going to say that I get a code word that's not in this subcode.

So that's very quick, intuitive sketch of that proof. Again, for writing it out, see the

notes.

But this lemma then proves this theorem, because it now says I can't -- if all the

starting times are different, and all the ending times are different, then I can't

possibly get shorter support for any of the generators. And I don't think so in a

totally convincing way, but that basically is the point here. Yeah?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Well, now I'm defining this. So, meaning that all the starting times are different, and

all the ending times are different. From now on that's going to be my definition of a

21



trellis-oriented generator matrix. So, saying that this property implies this property.

But now this lemma has an interesting consequence. This implies for any past and

future, Cp is generated by the generators in a trellis-oriented generating matrix with

support in p. And similarly, Cf is generated by the generators with support in f.

So for any p and f, I get a picture that looks like this. I can draw now this boundary

anywhere I want, and if the matrix was trellis-oriented, then I'm going to get a

certain subset of generators that live in the past, and they'll be the generators in fact

of Cp. The dimension of them will simply be the number of generators that live in

the past for that definition of the past.

There will be some other set that live entirely in the future. Those will be the ones

that generate the future.

And the ones that are neither wholly in the past or in the future will generate the

state code. So that says I can read off the dimensions of the state spaces just by

looking at this single trellis-oriented generator matrix.

So now let me very quickly go through the calculation that I went through a little bit

laboriously over here. Suppose I make the whole thing the future. In other words, I

draw a cut before time 0. Then the state space has dimension 0. All four generators

live on the future.

If I make the cut here, the state space has dimension 1, because three of the

generators live on the future. One is active at time 1. So that means I'm going to get

a two-state trellis at time 1.

If I make the cut here between past and future, I see two generators live on the

future and are inactive, haven't started yet. But two of the generators have already

started. At this time we have three active generators. Only one is still completely on

the future.

At this time in the middle I have two generators which -- past subcode, future

subcode, and two that aren't. So I get this form that we looked at over there. And I

22



get a state space here generated by these two generators of size two.

So just by looking at this I go right through the picture, and I find the size of the state

space at each time. So this is an algebraic way of finding the minimal state.

So now I can draw from this a trellis just by writing down these state spaces. Let me

leave these trellises here. Let me draw now a full trellis, or an eight-section trellis.

I'm only going to put one bit on each trellis.

Here is the starting state, dimension 0. One state. From that I can go out to 0 or 1. I

won't label the state spaces. Next time, I'm still just branching. Actually, to make it

look like that, I'm going to want to come down here, 0, 1, 1, 1, 1, 0.

I basically just have four states at time two corresponding to whatever the first two

bits are. They all go to different states, because all these have possible future

continuations. Then I have eight states at this time, still just branching. Sorry, this is

going to take some time to do correctly. Add this time, then I come in here. 0, 1.

Anyway, and it's symmetrical on the other side.

So that's what a full trellis will look like. And how did I do this trellis in principle? I

wrote down all 16 code words. I wrote down what linear combinations they were up

here, and I therefore found what states they went through at each time. And then I

just drew the graph that goes through that describes those trajectories.

So I wrote down all the code words. I wrote down all these state codes at all these

times. I could have written them down in any order. And then I just connected the

dots according to which state -- I make this calculation as to which state they go

through.

That's a good place to stop. Let me summarize. We now have a method, given a

generator matrix for a binary linear block code, of reducing that generator matrix to

trellis-oriented form. Just by inspection of the trellis-oriented generator matrix, we

can determine what the state space dimensions are at each instant of time, at each

possible state cut. And we can then draw a trellis which achieves that minimal state

space dimension, or minimal state space size, for every moment of time

23



simultaneously.

And I assert that this trellis is the minimal trellis in every respect, whether you're

trying to minimize state complexity, or if you're using the Viterbi algorithm. Really

what you want to minimize is the number of branches, but there's a calculation

about branch spaces in the notes that shows that this also achieves the minimal

branch space size at every time, regardless of how you draw the trellis.

More elaborate calculations with a more refined notion of Viterbi algorithm

complexities still come up with the same result. The result is there is essentially a

unique minimal trellis, where it's minimal in every way. And this comes from the

linear, or more broadly, the group property of the code.

So for any linear group code, there's a well-defined, essentially unique up to re-

labeling, minimal trellis that achieves the minimum of whatever complexity quantity

you want to define. So in this sense, the trellis complexity of a group or linear code

is very well-defined. It's defined by this minimal trellis, or by its parameters, and we

can use that as a measure of the complexity of the corresponding group code.

And from an engineering point of view, once we've got this minimal trellis, we can

use the Viterbi algorithm to do maximum likelihood decoding. Just in the same way

we did for convolutional codes, sweep from the starting node to the ending node.

Digest that, and we'll come back and talk about it again. Do a few more details on

Monday, but that's the basic idea.

24


