
MITOCW | 24ocw-6-451_4-261-09may2005-220k_512kb-mp4

PROFESSOR: Today we finish up chapter 13. I think we are finished, but I'll take questions. We get

into chapter 14, which starts to get into coding for bandwidth-limited channels. Here

we're coding directly in terms of Euclidean space rather than in terms of Hamming

space. And there's this wonderful quote from Neil Sloane. "Euclidean space coding

is to Hamming space coding as classical music is to rock'n'roll." Meaning that, in the

Euclidean space, things are continuous, whereas we were discrete back in

Hamming space.

Nonetheless, there are strong connections between the two, which in two lectures

I'll basically only have a chance to hint at. You were supposed to hand in problem

set nine last Friday, or today if you haven't already. Today, we'll hand out the

solutions for nine, and then chapter 14 and its problems, which are problem set 10.

These are not due. As always, I recommend you do them. The solutions will be

handed out Wednesday.

However, on the exam, the exam will not cover chapter 14. So everything we do this

week is gravy. The exam is a week from tomorrow in the morning. Ashish will

administer it because I won't be here. For this exam, it's closed book, except you're

allowed to make five pages of notes, as you did three pages on the midterm. And I

do recommend you bring a calculator, because for one of the problems the

calculator will be helpful. And I was told that erasable memory should be cleared on

the calculator, so point of honor if you do that.

Any questions about the exam or chapter 13? Yes?

AUDIENCE: Are you including the midterm [UNINTELLIGIBLE]?

PROFESSOR: Yeah, oh, everything in the course up to chapter 13. The rule is everything that we

covered in class. If we didn't cover it in class, then you're not responsible for it.

Other questions? Any last questions on chapter 13? This is kind of the finale for

binary codes. We found that, at least on the binary erasure channel, we had

techniques that would allow us to design LDPC codes that would get us as close to

1



capacity as we liked, or at least I made that assertion, directed you to where you

could find that done in the literature.

And I further asserted that, at least for binary symmetric input channels, like the

binary additive white Gaussian noise channels, you could do much the same thing

using techniques like density evolution or EXIT charts. Again, the issue is to design

code, such as this iterative decoding, after many, many, many iterations, will, with

probability one, converge to the correct solution (or with probably one minus

epsilon).

So that's the great conclusion to the story for binary codes, channels in which we

want to have binary inputs. And way back in the beginning, we said that that was

perfectly sufficient, really, for the general additive white Gaussian channel. When we

were talking about binary code rates less than 1/2, or nominal spectral efficiencies

less than one bit per second per Hertz, which are equivalent statements.

So what happens if we want to go over channels where we want to send at higher

spectral efficiencies? We want to send four bits per second per Hertz, as we

certainly do over, say, telephone line channels, which are 3,000, or 4,000-Hertz

channels, over which we want to send tens of thousands of bits per second. Or

many radio channels will support high numbers of bits per second per Hertz, and so

forth. Well, obviously, you can't do that with binary codes.

So, today and Wednesday in this chapter, we very quickly, of course, go through the

series of techniques that have been developed to go over bandwidth-limited

channels such as the bandwidth-limited additive white Gaussian noise channel.

Clearly, you're going to need a non-binary constellation, and somehow code on that

constellation.

But what you'll see is that both the techniques and much of the development are

very reminiscent of the binary case. Historically, the binary case was always done

first, and then the generalizations to non-binary followed. And so we'll see -- you

can start off with very simple, hand-designed constellations, as we were doing back

in the early chapters, four and five. We played around with little m equals eight

2



constellations and tried to optimize them from the point of view of, say, minimizing

power for a fixed minimum distance between points in a certain number of

dimensions in Euclidean space.

Now, we want to go up to considerably longer constellations. So that was kind of at

the level of Hamming codes and single parity-check codes and very elementary

binary coding techniques like that. So we want more complicated codes, let's say

moderate complexity codes. We will find things that are analogous to block codes,

linear block codes, namely lattices. These are structures in Euclidean space that

have the group property, as linear block codes do. And then we'll find trellis codes,

which are the Euclidean space analog of convolutional codes.

And basically, our goal in the next two lectures is to get to the level of a union-bound

estimate analysis of the performance of these kinds of coding techniques, which,

like their binary analogs, sort of sit in a moderate complexity, pretty good

performance, get up to 6 dB coding gain, can't get to capacity. So that's as far as

we'll be able to go in chapter 14.

In the last page or two of chapter 14, I briefly mention higher performance

techniques. And it's generally accepted that you can get as close to capacity on

these bandwidth-limited channels, additive white Gaussian noise channels as you

can on the binary channels, in some cases just by adapting binary techniques in a

kind of force-fit way, and others that are somewhat more principled, I might say.

But in any case, by adapting the binary techniques, you can get turbo codes, low-

density parity-check codes, capacity approaching codes of various types for the

bandwidth-limited channel. But I just hint how that can be done in one page, and I

can't include it in the course. So that's where we're going.

So basically, we're trying to design a constellation set of signal points. Constellation

c or signal set or alphabet, script c, if you like. And we're doing the kind of things we

were doing back in chapter four and five. What are some of the things that the

parameters we have-- we're going to do this in n-dimensional space. We're going to

be concerned with the size of the constellation, the log of the size, the number of log

3



2 of the size, the number of bits we can send.

We call this m at one point. That will determine the number of bits we can send per

n dimensions, or we can normalize it per two dimensions. Typically, I said, in

bandwidth-limited regime, we'll normalize everything per two dimensions. We're

going to have an average power of the constellation, which I'm just going to write

like that. We're going to have a minimum squared distance between points in the

constellation, which I'm going to write like that.

And the idea is to optimize the trade-off between this and this. Clearly, if I take a

given constellation and I scale it up, I'm going to get better minimum squared

distance without the cost of increasing power. So I either fix the minimum squared

distance between points and try to minimize the power, the average energy over the

centroids of a bunch of spheres, or vice versa.

So when we do this, this is kind of the game, we get into a classical problem called

sphere-packing. If we say, hold the minimum squared distance constant, that

means we want to have a certain minimum distance. Here I'll make it d_min over 2.

That means that there's going to be a sphere of radius d_min over 2 around each

point in this space, which must not be violated by the sphere of any other point. So

basically, we're trying to pack spheres as closely together as we can. And we're

maybe given the dimension. Here I have two dimensions to play with. We may be

given the number, m.

In general now, we're going to be thinking of m becoming very large. We want to go

to arbitrarily large number of bits per second per Hertz. So think of schemes that will

continue to work as we add more and more points. And if I do that in two

dimensions, we get penny-packing. Take a bunch of seven pennies out of your

pocket, and try to squeeze them together as tightly as you can. That's effectively

what we're trying to do. They maintain their fixed radius, and you get something that

quickly starts to look like what this is called, a hexagonal sphere-packing, because

the centers line up on a hexagonal grid.

And in fact, I forget exactly what we did. We did some of these back in the early

4



chapters. And let me draw a 16-point constellation, which I remember we did draw.

Here's a constellation consisting of 16 pennies. And subject to my drawing ability,

it's packed as closely as possible for a fixed minimum distance between the points.

And as far as anyone knows, this constellation, consisting a set of points on a

hexagonal grid, is the most dense packing of 16 points in two dimensions, as

measured by the average power of the centers. And it's not very symmetrical, but

you can see it's based on a symmetrical packing. This hexagonal, this is basically a

subset of 16 points from the hexagonal lattice. If we extend these points in all

directions-- again, I haven't done it very well-- but the hexagonal lattice is simply the

underlying lattice here.

Let me just draw a set of points that look like this. I'm going to fail again. Sorry, I'm

better at rock'n'roll than I am at classical music. Anyway, this is the lattice, and it's

called hexagonal because, if we draw the decision regions for this lattice, if we

consider this as a set of points in a constellation and draw the decision regions, it

looks like that, this little hexagon, defined by the six nearest neighbors. They define

six sides of a hexagon.

And so each lattice point has a little region of space that belongs to it, you can think

of as its decision region. Now, what makes this a lattice? What's the definition of a

lattice? We'll say an n-dimensional lattice. Very simple and elegant definition for a

lattice. It's a discrete subset. That means a set of discrete points of Rn, sitting in

Euclidean n-space, that has the group property. And you now all remember what

that means. It means the group property, under ordinary addition of vectors in

Euclidean n-space, addition or subtraction, of course.

What are some of the implications of having a group property? That means that the

sum of any two vectors is another vector in the lattice. Does the lattice have to

include the 0, the origin point? Anybody? Oh, good. I'm going to ask this on the

final. Come on. Does it or doesn't it?

AUDIENCE: It does.

5



PROFESSOR: It does. Why?

AUDIENCE: [INAUDIBLE].

PROFESSOR: OK, that's one good answer. It has to be closed under addition and subtraction.

Subtraction of the point from itself is going to give you 0. A more mathematically

trained person would probably, say, well, it obviously has to have an identity. Every

group has an identity element. And that means, if lambda is in the lattice, does

minus lambda have to be in the lattice? Yeah, every element has to have an

additive inverse, and so forth.

Well, so if I have a lattice like this, that means that one of these points has to be the

origin, say this one. Now, of course, you can have a translate of a lattice, and

geometrically it has all the same properties as the lattice itself, at any fixed t to all

the lattice points. In other words, make the origin somewhere else. But that's not

itself a group. That's the co-set of a group. It would translate as a co-set operation.

So lambda must be a group, and lambda plus t, any lambda translate is a co-set of

lambda. So most of the things you say about lambda are also true for lambda plus t,

but in order to fix a group, we need the origin to be part of the points set. OK, if it's a

group, what does that mean? That means, if we take any particular point, say this

one, regard it as a vector, then call this lambda_1 -- or let me it g1, more

suggestively. Does g1 plus g1 have to be in the group? Yes.

So that forces this point to be in there, 2g1, 3g1, so forth. All of these have to be in

there, as well as minus g1, minus 2g1, and so forth. So basically, once we found a

generator, all integers times that generator have to be in the lattice. So that means

there's a cross-section along the axis defined by g1, such that these points are

simply the integers, scaled by whatever the norm of g1 is.

And of course, that holds for any of these neighbors here. You want to look for

nearest neighbors of 0's. Take g2 and then, of course, all of its integer multiples

have to be in the lattice. So we've got a set here that, in some sense, spans n-

space. We have now two vectors, g1, g2, which are not linearly dependent. They're

6



sitting in 2-space. So if we take all real linear combinations of these two vectors,

we're going to get all of 2-space.

If we take all integer linear combinations of these two vectors, they all must be in the

lattice, right? By the group property? We've already proved that all the integer

multiples of either of them is in the lattice, so any thing plus or minus those two. So

certainly, the lattice includes the set of all integer multiples of a_i times gi, where i

equals 1 to 2, where a1, a2 is in the two-dimensional integer, lattice Z-squared.

Could there be any other points? There actually could, if you made a mistake and

picked your initial vector to be 2g1, because then you wouldn't have taken account

of g1. So you've got to take your two initial vectors to be two of the minimum norm

points in the lattice. But if you do that, then you can easily prove that this is all of the

lattice points.

So in fact, a two-dimensional lattice is equal to a set of all integer linear

combinations of two generators, which we can write as a little two-by-two generator

matrix, G. Or very briefly, we could write lambda as G times Z-squared, and we can

view it as just some linear transformation of Z-squared.

So in this hexagonal lattice, we can view it as starting out with a square grid. Of

course, Z-squared itself is a lattice. Z-squared is a group. This is just the square

lattice in two dimensions. We have Z_n as a lattice in n dimensions, in general. So I

take Z-squared, Z_n, more generally, and I distort it. I just run it through some g,

which is a linear transformation, and slants some of the generator points.

And that's a general way of getting a lattice. That's not the way we usually visualize

the hexagonal lattice. We usually visualize it in such a way as to recognize that it

has six-fold symmetry. But that's certainly a way to get it. And this has one

interesting consequence. One of the measures we want for a lattice is the volume

per lattice point. In here, the volume, you can divide this up into volumes that are all

of equal size, and we call that the volume of A2. This lattice -- hexagonal lattice, is

called A2, and it's the volume of that hexagon.

7



1 over the volume of that hexagon is the density of points in 2-space, if you like. So

density is 1/volume. I mean, think of every point as having a unique volume, and if

we basically consider the cells around each lattice point, they fill up 2-space, or the

perfect tessellation tiling of 2-space. These hexagons will.

One easy consequence of the group property is that all the decision regions have to

be congruent, in fact, just translates of one another by lattice points. The decision

region around this point is the same as the decision region about 0, translated by a

lattice point, namely the center of that decision region. I won't prove that but it's true

and easy to prove.

So that's one way of finding what's the volume. The volume will mean the volume of

2-space per lattice point. But what's another way to do that? Another way is just to

take this little parallelotope, whose volume is easier to calculate. And we can see

that we can equally well tile 2-space with these little parallelograms, just anchor -- in

this case, this is the one that's anchored in the lower left corner by the origin.

Then we take another one that's anchored by this point. We take another one that's

anchored by this point, another one that's anchored by this point. And it's clear

that's another tiling of 2-space by regions, one for each lattice point that completely

fills 2-space with overlaps only on the boundary, which don't count.

So the volume of A2 is also the volume of that, what's called a fundamental

parallelotope. And what's the volume of that fundamental parallelotope? Well, one

way of calculating it is to take the volume of Z-squared. We can view this as the

distortion of Z-squared, which looks like this. So if this is Z-squared, what's the

fundamental volume of Z-squared? The volume of Z-squared per lattice point. This

is (0,1,-1,1, so forth,1,1). What's the volume of Z-squared per--

AUDIENCE: 1

PROFESSOR: --1. Clearly. And we have this decision region. This is little square side 1, or this

parallelotope is also little square side 1. It's volume is 1. General geometric

principle, if we take this and distort it by G, then what's the volume of, say, this

8



parallelotope going to be? This parallelotope goes by G into this one, and its volume

is the Jacobian, which is the determinant of G.

So the volume of a lattice is the determinant of any generator matrix for that lattice.

Just a nice little side fact, but it's an example of the kind of things you get in

Euclidean space that you don't get in Hamming space. Of course, there are various

generator matrices that you could use to generate this lattice. But whichever one

you choose, this is going to be true.

So this is an invariant among all the generating matrices. So that's a lattice. I

haven't mentioned what's the most important thing for us about a lattice. A lattice is

a group. What's the fundamental property of a group, which I guess was embodied

in the alternate set of axioms for the group? If I take the group plus any element of

the group, what do I get?

AUDIENCE: [INAUDIBLE].

PROFESSOR: The group again. Let's interpret that geometrically. One of the nice things about this

subject is you're constantly going back and forth between algebra and geometry.

Geometrically, what does that mean? That means, if we take this lattice, say the

origin is here, and we shift it, say, so that the origin is up here, then nothing

changes. Everything is invariant to this shift. We can do this for any lattice point.

That shows you that all the decision regions have to be congruent. It shows you that

the number of nearest neighbors, the minimum distance from any point to its

nearest neighbors is always the same for any lattice point. Basically -- it's a lattice is

geometrically uniform. That means you can stand on any of the points and the world

around you looks the same, as if you stood on any of the other points.

Think of these as stars in the universe, and somebody blindfolds you and drops you

on one of these points. Can you tell which one of those points you've been dropped

on if nobody's written anything on these points? No, you can't tell. The world looks

the same from whichever one you drop on. So that means the minimum square

distance from any point is the same as every other.

9



So the number of nearest neighbors at minimum square distance is the same. It

means the total distance profile, starting from any point, is the same. It means if we

were to take one of these points and send it over a Gaussian channel from a very

large set, and we take one of the points from the interior and send it over an

additive white Gaussian noise channel, the probability of error is going to be the

same, regardless of which point we send it from, because the probability of error is

the probability of falling outside your decision region. And since the decision region

always has the same shape, it's invariant to which point you send.

So this geometrical uniformity property, which that's the general name for it and it

has all these specific consequences that I just listed, is the principal geometrical

property of a lattice. This just follows from its group property. You don't have to be a

lattice to have this property. For instance, the translate of a lattice is not a group,

technically, but it obviously has the same geometrical uniformity property. And there

are more elaborate examples of things that look less like lattices that are

nonetheless geometrically uniform. On the other hand, lattices definitely are

geometrically uniform.

So this seems to be a good thing to do, because what's our objective? We're trying

to have d_min-squared be the same for every point in our constellation. We want to

tack these pennies as close together as we can. That means we want to hold

d_min-squared constant for every point that we're going to use. And so lattices have

that property. So that seems like a good way to do sphere-packing.

And in fact, sphere-packing, in n-dimensions, is a very old mathematical subject.

How many spheres can you pack around a three sphere, is it 12 or 13? That was

debated in the 18th and 19th centuries, and I think it's only finally just been resolved

a few years ago. This turns out to be not an easy problem. The densest sphere-

packing in four dimensions was found in the mid-19th century. In eight dimensions, I

think around the turn of the 20th century. In 16 dimensions, it's the Barnes-Wall

lattice, which we'll see a little later, which was found in '54, about the same time as

Reed-Muller codes, or maybe it was '59, maybe a little later than Reed-Muller

codes.

10



The Leech lattice was certainly found a little earlier than that, but around the same

time as the Golay code, to which it's a very close cousin. And so forth. So you might

think that these questions had all been settled, but in fact they're still open for most

specific dimensions, n. Conway and Sloane have the authoritative book on this,

which basically lists what we know about the densest sphere-packings in all

dimensions.

So here's our idea. Our idea is we're going to go consult the mathematicians and

find out what the densest sphere-packings that they found are in various

dimensions. In two dimensions, it's the hexagonal lattice. In one dimension, it's the

integer, and basically the integers are the only packing with regularity properties in

one dimension. And two dimensions, you could consider Z-squared, or you can

consider A2. These are the two obvious candidates, the square and the hexagonal

packings.

In three dimensions, you get face-centered cubic packing. And what's the BCC?

The base-centered cubic packing, I guess.

AUDIENCE: Body-centered.

PROFESSOR: Say again.

AUDIENCE: Body center.

PROFESSOR: Body-centered, thank you. I'm sure you're right. So anyway, there's some things

that are known about this from classical mathematics and current mathematics. So

our idea is we're going to try to find the densest possible lattice in n dimensions. But

for digital communications, for coding, we only want a finite number of points from

that constellation. So what we're going to do is we're going to create our

constellation based on a lattice and on a region of n-space. And the idea is simple.

We're just going to intersect the lattice. Or maybe let me allow a translate of a lattice

with the region.

And make this a finite, compact region. And this will give us a certain finite subset of

11



the points in the lattice. Now, when I draw a constellation like this one, of a size 16,

that's what I've done. I've basically taken A2. Or it's actually a translate of A2. I think

the origin is in here somewhere. And I draw a sphere around the origin. And I take

the 16 points that happen to fall within that sphere. And I call that my constellation.

So that's the idea in general. Think of the region, r, as a cookie cutter. We're going

to take the cookie cutter and chop out a finite number of points from this nice,

regular, infinite grid. And that will give us a constellation. So especially for large

constellations, we'll be able to make some approximations that will allow us to

analyze that kind of constellation very easily.

And actually, the best constellations that we know are of this type. We've taken this

baseline, m-PAM. Well, what's m-PAM? We take the lattice plus t, let's say to be Z

plus 1/2. So that means we don't take the origin, but we take the points 1/2 minus

1/2, 3/2. They're equally spaced points, but we've shifted them so as to be

symmetric about the origin. 5/2 minus minus, so forth. So this is Z plus 1/2 is our

lattice. And then if we want 4-PAM, we take a cookie cutter consisting of this region.

So this is the region going from minus 2 to 2. It's not unreasonable to expect that, if

we take a region of length 4, we're going to get 4 points, if, again, it's symmetric

around the corner, because each of these points takes up about one unit of space

over here. So if we made it from minus 4 to plus 4, we'd have a region of length 8,

and we'd get 8 points. And so forth. So that's how we do m-PAM, and then scale it if

we want to. But this is the basic idea.

Similarly, for m by m QAM, like everything else, it's just doing the same thing

independently in two dimensions. Here we take our lattice to be Z plus 1/2 squared,

which is just the offset Z-squared, offset so as to be four-way, to be roughly

symmetrical to four-way rotations, 90-degree rotations.

So here is Z-squared plus (1/2, 1/2). And then, again, here to get 16-QAM, for

instance, we might take the region to be what? (-2,2)-squared which, again, has

area 16. You might think of this as just taking the little square around each of these.

Each of these squares has area 1. So when we take the union of all those squares,

12



we get the region.

That's another way of characterizing this region. It's just the union of all the decision

regions of the points that we want. If you had started from the points, you could

certainly invent a region that is the union of those decision regions. It would have an

area equal to the number of points times the volume of 2-space per each point.

That's the kind of approximation we're going to use. The bounding region is clearly

going to have something like the number of points in the constellation, times the

fundamental volume as its volume. So this is our idea. This is what we're going to

call a lattice constellation. And we're going to investigate the properties of lattice

constellations, not the most general thing we could think of but good enough.

Seem to have the right sort of property. And we're going to take it at least as far as

the union-bound estimate, so we can get a good estimate of probability of error if

we take one of these constellations, like m-by-m QAM, and use it to transmit over a

Gaussian noise channel. And furthermore, for large constellations, meaning as we

get well up into the bandwidth-limited regions of large nominal spectral densities,

we're going to be able to separate the analysis into lattice properties and region

properties. And we'll basically be able to just add these up to get the overall

analysis, by making some judicious approximations that become exact in the large

constellation limit.

So let's now restrict ourselves to lattices, or translates of lattices, and start to

analyze them. What are their key parameters for our application, which is digital

communications? Well, one is the minimum squared distance between lattice points.

We've seen that doesn't depend on the particular point. So this is the minimum

squared distance from any lattice point. The number of nearest neighbors. The

volume per lattice point. And is there anything else? It seems to me there's a fourth

one. No. I guess that's all we need to know.

So I want to combine these into a key figure of merit for coding. Again, we did this

back in chapter four for a complete constellation. We found the figure of merit by

holding the average power fixed for a fixed number of points, m, on a fixed

13



dimension, n, and maximizing the minimum square distance, or, conversely, holding

the minimum squared distance fixed and minimizing the average power. So we get

some figure of merit that was kind of normalized, and we could just optimize that

one thing.

The key figure of merit was called by 19th-century mathematician, Hermite's

parameter, but we are going to call it the nominal coding gain because that's what

it's going to turn out to be. And it's just defined as follows. The nominal coding gain

of a lattice is just this minimum squared distance, so it goes up as the minimum

squared distance. But then we want to normalize this. And the obvious thing to

normalize it by, we want something that's going to scale as a two-dimensional

quantity. If the lattice was scaled by alpha, then this would go up as alpha squared.

So we want something that'll scale in the same way.

And what we choose to normalize it by is the volume of lambda per two dimensions,

if you like. So you can see immediately, this is invariant to scaling, that the nominal

coding gain of lambda is the same as the nominal coding gain of alpha lambda. Is

alpha lambda a lattice, by the way? If lambda's a group, and we have any scale

factor alpha greater than 0, then alpha times lambda is also a group. Everything's

just multiplied by alpha. So alpha lambda is a lattice.

And this is actually one of the homework problems. If you scale everything by alpha,

d_min-squared goes up by alpha squared. The volume goes up by alpha to the n,

for an n-dimensional lattice. But when we take 2 over n, we're going to get back to

alpha squared. So alpha c of lambda is alpha c of alpha lambda. So this is what you

want. You want a kind of scale-free version of a lattice, because, obviously, when

we use this, we're going to feel free to amplify it or compress it any way we want, so

we do with QAM.

All right, so this is normalized in that way. We prove in the homework it's also

invariant to other things. If you took, say, an orthogonal transformation of this lattice,

a rotation, reflection, multiply it by a matrix that doesn't change the scale, think of it

geometrically as an orthogonal transformation, is that going to be a lattice? It is

14



going to be a lattice. Everything's just going to have some h out here, times G times

Z-squared, and that's still of the form of a lattice. Or call it U for orthogonal, unitary.

So we multiply it by some orthogonal matrix, U. It's still a lattice. If we look in here,

orthogonal transformations don't change squared distances. We're not going to

change this -- it doesn't matter. Actually, I might. No. It's a rigid rotation, I'm sorry.

Everything here stays the same. Hexagonal lattice still is hexagonal lattice, because

it's a rigid rotation or reflection geometrically. And the volume clearly stays the

same, so none of these things changes. And orthogonal transformation isn't going

to change this quantity either.

So we can rotate this or do whatever. And then, finally, there's an even more

interesting one, which is, if we take the lattice, lambda to the m, this is simply the

Cartesian product. It's the set of all lambda_1, lambda_2, lambda_m, such that

each of these lambda_k is in Lambda. So it's the set of all n-tuples of elements of

Lambda. This clearly lives in dimension mn, so it's a much higher-dimensional

lattice. The simplest case is Z to the m - it lives in m dimensions, whereas Z is down

in one dimension.

So it lives in dimension mn. It's a way of constructing high-dimensional lattices from

low-dimensional lattices. It's something that, in communications, we consider to be

almost a non-event. Sending a sequence of elements of lambda is the same as

sending a sequence of elements of lambda_m. In fact, if we just send a sequence of

things from here, and a sequence of things from lambda, there's no difference from

a receiver's point of view. So we regard these two lattices as equivalent, from a

communications point of view.

Well, what happens to d_min-squared? d_min-squared doesn't change, because

we can always-- d_min-squared is, by the way, the weight of the smallest-- should

have said that. You can always do things relative to 0. d_min-squared, therefore, is

the squared norm or lowest squared energy of any non-zero lattice point, same as

we did with Hamming codes, just by the group property. K_min is the number of

such lowest Euclidean weight points.

15



OK, here, what's the lowest weight point? It would look something like this, where

this is one of the lowest weight points in lambda. So d_min-squared doesn't change.

This changes, but we're not considering that. The volume, what is the volume? It

turns out that it's not hard to show that V(lambda to the m) is V(lambda) to the m.

And therefore, you can show that this is figure of merit doesn't change, even if you

take Cartesian products.

So for instance, I chose that the nominal coding gain of to the m is equal to the

nominal coding gain of Z. Which is what, by the way? I should have done this as the

first example. What's the minimum squared distance of Z? 1. What's the volume of

Z? 1. So this is 1, or 0 dB. We're going to measure nominal coding gain in dB,

which, well, we're getting us into communications.

What's the nominal coding gain of the hexagonal lattice? By asking this question,

I'm basically asking, is the hexagonal lattice denser than Z-squared in two

dimensions than the square lattice in two dimensions? And if so, quantitatively, how

much denser is it?

AUDIENCE: [INAUDIBLE].

PROFESSOR: OK, well, there's a root 3 in it, but that isn't exactly the answer, I don't think. There

are various ways that you can do it, but one of the ways is to take, as a generator

matrix, (1, 0; 1/2, root 3 over 2). You like that as a generator matrix for the-- That's

taking this and this as the two generators, and recognizing this as 1/2, and this as

root 3 over 2. That makes the length of this equal to 1/4 plus 3/4, equals 1 square

root, and it's 1.

So these are my two generators of length 1 in a hexagonal lattice of minimum

squared distance 1. So based on that, I can say that the volume of A2 is what?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Root 3 over 2. Not hard to take the determinant of that, right? And what's the

minimum squared distance in this scaling? What's the minimum non-zero weight --

squared norm, it's 1. So this is equal to 1 over root 3 over 2, which is equal to 2 over

16



root 3. Which is equal to what? This is 3 dB. This is 4.8 dB, roughly. Square root is

2.4 dB. So this is about 0.6 dB.

That's where it pays to be facile with dB's. This area, by the way, if you tried to

compute the area of this little hexagon here, what would it be? If the area of this

parallelotope is the square root of 3/2, what's the area of this hexagon? The same,

right? They're both space filling when centered on lattice points. So they have to

have the same area. So that's an easy way of computing the area of a hexagon, or

of this particular hexagon anyway.

But you would get the same result in either way. So comparing this with Z-squared, I

now have a quantitative measure of how much denser A2 is than Z-squared. Put in

one way, if I fix the minimum squared distance of each of them to be 1, if I'm doing

penny-packing and I say I want pennies of a certain radius to be packed into two-

dimensional space, then this is 1 over the volume, which is basically the density.

The density of A2 is 2 over root 3, times [UNINTELLIGIBLE] as the density of points

in z squared. I get more points per unit area with the same distance between them

using A2 than I can with Z-squared.

So that's the significance of this parameter. So it's an obvious thing for Hermite to

have come up with. It's going to turn out to be equally fundamental for us. So that

may be all we want to do on lattices for the time being. Yeah, seems to be.

So we're talking about lattice constellations. The other thing we have to develop is

the properties of regions. So let me talk about regions, R -- I'm thinking of a

compact region in an n-dimensional space. So again, let me fix the dimension to n.

And we're going to have a certain volume. That's obviously an important

characteristic of a region. And I'm going to assume that this is finite.

And what's the other thing that we basically want? Well, when I pick a constellation

like this, by intersecting a lattice with a region, eventually I'm going to let the points

in this constellation be equiprobable, as I always do in digital communications. 16

points. Say they all have probably 1/16, the uniform probability over the discrete

points.

17



One of the approximations I am going to make -- so what's the average power of

that constellation? We could figure it out by taking 1/16 times the energy. I should

say the average energy, I'm sorry. We're not talking power here. We're talking

energy, but I read it as P. What's the average energy? It's 1/16 times the L2 norm of

each of these points, if you like that. It's simply the Euclidean squared norm.

And we get some average. But here's the key approximation principle. I'm going to

say the average power of this constellation, especially as the constellations get

large, is simply going to be approximated as the average energy of a uniform

distribution over this bounding region. Suppose I simply put a uniform continuous

distribution over this circle, this sphere, two sphere that I've used to be my cookie

cutter. I'm going to say that's going to be a good approximation to the average

energy of the 16 discrete points, which are, by construction, they're spread

uniformly over this region.

The approximation is, I'm kind of approximating a unit impulse of weight there by

distributed weight across its-- well, actually across its whole little region. If we have a

hexagon around each one, uniform distribution over the hexagon. And if that's a

reasonable approximation, then it's reasonable to say that the average power of the

whole constellation is just the average power of a uniform distribution over this

region.

It's good exercise to try it for some moderate size cases. And you'll find it is a very

good approximation. In any case, it's the one we're going to use. So the other key

parameter is going to be P(R), which is, in words, the average energy of uniform

distribution over R. Sorry, script R. Now, when we write this out, this actually gets a

little formidable. So I think it's better to remember what we're actually trying to

compute. Oh, and one last thing, we're going to normalize it per dimension.

So what do I mean? What's a uniform distribution over R? This is P(x equals 1) over

the volume of R for x in R and 0 otherwise. Uniform within, 0 outside. And what does

it have to equal? It has to be equal to 1 over V(R), because its integral has to be

equal to 1 if it's a probability distribution.
18



So to compute P(R), we basically take the integral from over R, of this probability

distribution, 1 over V(R), times what? The energy per dimension. The total energy

of x is x-squared, the L2 norm of x. Normalize per dimension -- we're going to put

an n over there -- dx. So that's an equation for what it is I wanted to compute.

I think it's much harder to remember the terms in this than to remember this verbal

description of what we want. But you may be more literate than I. Now, let's define --

we want to normalize quantity comparable to Hermite or coding gain over here. The

normalized quantity we're going to use -- we want to take P(R) -- and what should

we normalize it by to make it scale-invariant, let's say again?

Again, if I take the region, I scale the region by alpha and get alpha_R. What's going

to happen to the average energy of a uniform distribution over R?

AUDIENCE: [INAUDIBLE].

PROFESSOR: It's going to go up as alpha squared. Energy scarce, goes as the square of the

scale factor. So again, I want to normalize it by V(R) over 2 to the n, because this is

also something that will go up as alpha squared if I scale R by alpha.

So this is what's known as the dimension-less or normalized-- it has both names--

second moment. Another name for this is the second moment per dimension of a

uniform distribution over R. This is a normalized or dimension-less second moment.

I think I call it normalized in the notes, but it's always called G in the literature.

And let me just introduce here-- well, what's the normalized second moment of an

interval? Say, a symmetric interval around the origin. G to the minus 1 to the 1,

which is like the interval that we used to pull out the m-PAM signal structure. So let's

take n to be equal to 1, R just to be the interval from -1 to +1. And V(R) equals

what? It's the length of R, which is 2.

What's P(R)? The integral from -1 to 1, x squared, dx, which is 2/3. I think so.

AUDIENCE: [INAUDIBLE].

19



PROFESSOR: Right, 1/2. Thank you. That's 1/3. All right, so what is G(R) going to be, or G going

to be? This is going to be P(R) over V(R)-squared. And so this is going to be 1/3

over 4, or 1/12. OK, that's not as nice as this over here, but it is what it is.

There's a number that shows up in quantization, for instance, uniform scalar

quantizer, you'll find a 1/12 in there. Why? It's because of this equation. If we ask

again about the invariances of this-- this is the last homework problem for this week-

- it's invariant not only to scaling, but, again, it's invariant to orthogonal

transformations, because orthogonal transformations won't affect either of these

things. A rigid rotation, about the origin, won't affect V(R) or P(R). And furthermore,

it's invariant to Cartesian products, again.

If we just have a series of regions, a region made up basically as the Cartesian

product, like an n-cube is a Cartesian product. We just pick each of the dimensions

independently from some set R. Then that's not going to affect the normalized

second moment either. Exercise for the student.

So from that result, I can say that G([-1 1]) to the m. Which is what? This is an m-

cube of side 2. If I say each of the coordinates, x1, x2, x3, up to xm, has got to be

xk n times [-1 1], then what I'm going to get, the region defined by that is an m-

cubed, centered on the origin of side 2.

So the normalized second moment of that is going to be 1/12. This is where the

shortcut begins to help you. I guess I'm trying to put too much on one board. But the

last thing I want to put up on here is the shaping gain. The shape gain of a region is

defined as the shaping gain of the region is equal to 1/12. So we're kind of taking as

a baseline, the m-cube, in any number of dimensions n, over G(the region).

In other words, how much less is the dimension-less second moment, the

normalized second moment, than what you would get for an m-cube? In every

dimension except for one, a sphere is going to be a better region, from a second

moment point of view, than an m-cube. An m-cube has corners. Really, it's pretty

obvious that, if you want to minimize the normalized second moment in any number

of dimensions, you would choose an m-sphere, because if you have any wrinkle

20



that comes out of an m-sphere, anything that's not an m-sphere, you should try to

squash it back in it. And that'll make it an m-sphere.

You'll take higher energy and make it lower energy for the same little unit of Play-

Doh or mass stuff. So a sphere will give you the best normalized second moment in

any number of dimensions n, so you're always going to get a G(R) that's less than

1/12. That's good. And this measures the amount of gain.

Again, you can measure this in dB. That's going to translate directly to dB. I

suppose I could do an example for the sphere in two dimensions, but I won't. How

are we doing on time? Let me see if I can do the union-bound estimate. That would

be a trick, but I think it's doable, because this is where we're going.

So the union-bound estimate, which is something we did way back in chapter five or

something, is basically, given a constellation, which we're going to have a lattice

constellation based on some lattice lambda and some region. So this is like our m-

by-m QAM, or it might be this guy, which is better than 16-QAM, in some sense. In

two senses, actually.

The union-bound estimate, what is it? The probability of error is approximately

equal to-- let me do it per block. So I'll have the number of nearest neighbors per

block of our constellation times Q to the square root of d_min-squared of our

constellation, over what is it? 4 sigma squared? 4 sigma squared.

And if you remember how we got this, we took the union-bound, we took all the

pairwise error probabilities, and from that, we get contributions from kd at every kd

contributions at distance d. We added them all up in the union-bound. We said, well,

for moderate complexity and performance, at least this is going to be dominated by

the minimum distance. So this is the minimum distance terms. This is the number of

minimum distance terms. And this is error probability -- the pairwise error probability

we get for each minimum distance term.

Now, to compute this, I'm going to use three approximations, but two important

ones, this continuous approximation that I've already referred to. First, I'm going to

21



say that the average power of my constellation is approximately equal to just the

second moment of R. The average energy per dimension of R.

And then I'm going to say, furthermore, how many points are there in the

constellation? This will affect what rate I can go at. The average number of points in

the constellation -- also mention this-- is going to be approximately equal to simply

the volume of my bounding region, V(R), over the volume taken up by each point in

my lattice.

That makes sense, doesn't it? What I want to do here to get 16 points is I take a

sphere whose area is roughly 16 times the area of one of these little hexagons or

one of these little parallelograms. And I'll get about 16 points, because that's the

density of it.

And there's a final little approximation, which is that I'm going to assume that we're

somewhere in the interior of the lattice, so that the average number of nearest

neighbors in the constellation is simply equal to the number of nearest neighbors in

the lattice. So that's a reasonable approximation, and that's a very obvious one. If I

take any constellation based on the hexagonal lattice, for a large enough

constellation, the average number of nearest neighbors is going to be 6. If I take it

on the square lattice, the average number of nearest neighbors is going to be 4.

But we know we're not terribly interested in that either. Let me do a little

manipulation here. I'm going to write this as Q of d_min-squared of c, which clearly

I'm going to also assume that d_min-squared of c is equal to d_min-squared of the

lattice. So I'll make that d_min-squared of the lattice. And I want to normalize that by

v of lambda, to the 2/n, whatever dimension n I'm in, to get something that we're

familiar with. So I need a V(n) over 2 to the n.

And anticipating a little, I'm going to put a V(R) over 2 to the n. And then over here,

I'm going to put V(R) over-- Is this going to come out right?-- over 2 to the n, over--

this seems upside-down. Ah, no, it isn't upside-down. Because I'm using this

expression here, I do want 1 over G(R).

22



So this is 1 over G(R). If I multiply this by 1/12, now I get 1 over G(R), so I need to

put a 1/12 here. And then I have a P(R) over 4 sigma squared. So does everyone

agree I can write it that way? This'll be good. Go out with a bang.

So what are all these things? This is the coding gain of lambda. This, according to

this, is the size of the constellation to the 2 over n, approximately. The rate of the

constellation is log 2 times the size of lambda, R. So the rate is equal to just log 2 of

this quantity. So I can say 2 to the R. This is 2 to the R equals this. So this would be

2 to the 2 over n, 2R over n. Is that right? Again, I'm unsure if that's what I want.

This is the shaping gain of the region, these three things together, times 3, times--

what's P(R) over sigma squared? That's the SNR. That's the average power per

dimension. And this is the average noise power per dimension. I've used up these in

that. So I've got a 1 over 1/12. That's 12 times that. So this is 3 times SNR.

And let's see. This is 2R over n is just 2 to the--

AUDIENCE: Isn't that just 2R? Because [UNINTELLIGIBLE] normalized by the dimension.

PROFESSOR: Yeah. And furthermore, it's minus, because it's upside-down. So it's 2 to the - 2R.

Actually, what I want is the spectral efficiency. And the spectral efficiency is the rate

per two dimensions. So this is just 2 to the minus rho. So with a little help for my

friends, what's SNR over 2 to the rho?

AUDIENCE: [INAUDIBLE].

PROFESSOR: It's approximately SNR norm. Certainly true as row becomes large. It's actually SNR

over 2 to the rho minus 1. So this is SNR norm. OK, so with a little hand waving and

a few high SNR approximations, we get that, in summary, for the UBE, the

probability of error is approximately K_min(lambda) times Q to the square root of

the coding gain of the lattice, times the shaping gain of the region, times 3SNR

norm. And that's a wonderful approximation.

Let me just call out some of its properties to you, and then we'll talk about them next

time. But first of all, there's nothing here-- all these terms involve either lambda or

23



R. So we have completely separated, in this analysis, the effects of the region from

the effects of the lattice. We can choose the lattice and the region independently.

And they independently affect how good a performance we get. For the baseline,

which was either m-PAM or m-by-m QAM, we have, for the baseline PAM or QAM,

we've set it up so that both the coding gain of the lattice and the shaping gain of the

region are equal to 1.

So for the baseline, this gives us what we already developed back in the early

stages. I won't worry about this -- Q-hat, but it does give you the right coefficient out

here, too, depending on whether you normalize it per two dimensions or what. It just

gives you Q to the square root of 3SNR norm, which I hope you remember from

chapter five. So this is our baseline curve for m-PAM or m-by-m QAM.

We just plotted versus SNR norm, the probability of error per two dimensions, which

is what I recommended. And we got some curve. So this is the baseline. And now

we've got everything separated out in a nice way, so that if somebody gives us a

lattice with a certain coding gain and a region with a certain shaping gain, those

both just add up as gains.

If that's all we had, forget the coefficient, we would just move to the right here, and it

would give us effective reductions and the required SNR norm by the coding gain of

the lattice and the shaping gain of the region. And we'd get the same curve moved

out over here.

Again, as in the binary case, typically we're going to get a larger number of near

neighbors, leading to a larger coefficient out here. We want to normalize this per

two dimensions. Per two dimensions, it's only 4 for the baseline. But in general,

we're going to get a KS of lambda, the number of nearest neighbors per two

dimensions, which is going to raise this a little. And that will lower the effective

coding gain down here.

But we've basically, by these large constellation, high SNR approximations, we've

really reduced the analysis of lattice constellations to a very simple task, just to

analyze what's the coding gain, what's the shaping gain, number of nearest

24



neighbors, plot the performance curve, end of story. So we'll start there next time.

25


