
MITOCW | ocw-6-451_4-261-09feb2005-220k_512kb-mp4

PROFESSOR: And what we saw was the performance was quite different in the two regimes. In

power-limited regime, typically our SNR is much smaller than one, whereas in the

bandwidth-limited regime, the SNR is large. And because of this behavior of SNR,

what we saw is that the Shannon spectral efficiency in the bandwidth-limited regime,

it doubles for every -- if we double our SNR. For every 3 dB increase in SNR, the

spectral efficiency increases by a factor of 2.

In the bandwidth limited regime, if we have a 3 dB increase in SNR, the spectral

efficiency increases by one bit per two dimension. On the other hand, if we double

our bandwidth, then the capacity in bits per second is not affected in the power-

limited regime. But if we double our bandwidth, then in the bandwidth-limited

regime, the capacity increases approximately by a factor of 2.

And that's really what motivated the name bandwidth-limited and power-limited

regime. If we want a more operational definition, then we say that the flow is less

than two bits per two dimensions, we will have this bandwidth-limited regime. And in

this case, rho is greater than two bits per two dimensions.

The number two bits per two dimensions was chosen because it is like the largest

spectral efficiency we can get through binary transmission. If it's an uncoded two-

PAM over a channel, then we get two bits per two dimensions. If we are coding, the

only thing we can do is reduce spectral efficiency. So typically, if we are going to

operate in power-limited regime, the operational meaning is we can get away with

binary transmission. In the bandwidth-limited regime, we have to resort to non-

binary transmission.

So in other words, binary modulation is done in power-limited regime, whereas we

need multi-level modulation in the bandwidth-limited regime.

The baseline system here is 2-PAM. The uncoded performance was of 2-PAM. In

the bandwidth limited regime, it is M-PAM. And the way we measure performance in

the power-limited regime is the probability of bit error as a function of EbN0. OK? In

1



the bandwidth-limited regime, the performance measure is done by probability of

error per two dimensions as a function of SNR norm.

And in this case, we saw that the gap to capacity -- or rather, to put it in other

words, the ultimate limit on EbN0 is minus 1.59 dB. And here, the ultimate limit on

SNR norm is 0 dB.

OK? Any questions on this? Yes.

AUDIENCE: Why do we use Eb over N_0 SNR norm for [INAUDIBLE] bandwidth limited?

PROFESSOR: That's a good question.

AUDIENCE: Why do we use Eb over N_0 for both regimes?

PROFESSOR: Or why don't use SNR norm for both regimes?

AUDIENCE: Yeah.

PROFESSOR: Now if we think about the bandwidth limited regime, what we really care about is

spectral efficiency, right? What SNR norm does, if you remember the definition, is

that it compass the amount of SNR we require for a practical system to that of the

best possible system. So in other words, if you do care about spectral efficiency,

SNR norm is the right measure to look for.

OK, now what happens in the power-limited regime? It turns out, probably more for

historic reasons, people started with EbN0 in the power-limited regime. And if you

look at the definition of EbN0, it is SNR over rho, right? So in the power limited

regime, our rho is small, the SNR is going to be small, but if you look at -- because

we are in the power limited regime so we have lots of bandwidth, so our SNR is

going to be small and the spectral efficiency is going to be small. But if you look at

the ratio between the two, it's going to be greater than minus 1.59 dB.

OK. so it turns out that the kind of limit we do take, our EbN0 remains constant as

minus 1.59 dB, and that's probably one of the reasons that motivated to use EbN0

in the power limited regime. On the other hand, one could also argue is that what

2



really happens in the power limited regime is that our bandwidth becomes really

large. So if this [UNINTELLIGIBLE] stick with 2-PAM system, then we do get a

spectral efficiency of two bits per two dimensions, but that's just because we are

using a particular modulation scheme. If our bandwidth is really large, we are not

really going to care about what spectral efficiency we use. What really matters is this

energy per bit, and that's why this is a reasonable assumption.

Does that answer your question? Right, it's not completely clear as to why this EbN0

is the best here, and SNR norm is here if you don't take the limit rho going to zero

here, but again, you can think of it more as a convention. OK.

AUDIENCE: [INAUDIBLE]

PROFESSOR: So if you look in the power-limited regime, you are saying rho is less than two bits

per two dimensions. If you use an uncoded 2-PAM, what's your spectral efficiency?

It's two bits per two dimension, right? Now the idea is, suppose we want to design a

system with spectral efficiency greater than two bits per two dimensions? We cannot

really use a 2-PAM system. Because if you put coding on top of it, all we are going

to do is simply reduce the spectral efficiency below two bits per two dimension. So

we have to start with a non-binary modulation, right? So that's how we distinguish

between power-limited and bandwidth-limited

AUDIENCE: That's just because you're using the 2-PAM as your baseline [INAUDIBLE]?

PROFESSOR: Right. OK? All right. So let us do an example to finish off this analysis.

Now suppose -- say you are at a summer project, and you're assigned to design

some system. Your boss gives you some specifications, like continuous time

specifications. In particular, you have a baseband system. The baseband system

has a bandwidth of one Megahertz. You have a power, P, which is one unit, so

that's another resource you have. And if you measure your channel, it can be

reasonably approximated as an AWGN channel, so there is no ISI or any filtering

going on, just Additive White Gaussian Noise. And your noise a single sided spectral

density of ten to the minus six units per Hertz of the bandwidth.

3



And what is your goal? So you have the following goal. Design a 2-PAM system,

with a specified probability of bit error. And what you want to do is compare this to

the ultimate Shannon limit. So that is your objective.

So since we have to compare it with Shannon limit, and we have already a formula

for the Shannon limit, let's just start with that. So for this problem, we have the

Shannon limit. You have rho is less than log base 2 of 1 plus SNR. For SNR, I can

talk in terms of this continuous time parameters, it's P over N_0 W. My P is one unit,

and nought is ten to the minus six, and my bandwidth, W, is one Megahertz here,

which is ten to the six. So my P over N_0 W is basically one. So I have 1 plus 1,

which is 2. This is log base 2 of 2, or it's one bit per two dimension.

So my capacity in bits per second is rho W, and rho is one bit per two dimension,

the bandwidth is one Megahertz. So I get ten to the six bits per second. So this is

my Shannon capacity for this particular AWGN system. OK.

The next thing we want to do is compare this with a practical system, and see how

close we get to the Shannon limit. And since you only have to work with 2-PAM, the

generic architecture is something we saw last time. You have input bits coming in,

let's call them X sub k, where k is the kth bit. And they belong to a certain

constellation, let's call the -- the constellation points are just -- it's a 2-PAM system,

so we have minus alpha and alpha.

And this goes through a PAM modulator, and one parameter to specify for the PAM

modulator is the symbol interval. Right, the time between sending consecutive

signals over the channel. What you get out is X of t, this is the channel model, N of t.

There's already noise over the channel, and what you get out is Y of t.

So this is the generic architecture. And now, your goal for the design problem is to

select alpha and t in the right way, so that they satisfy this continuous time

constraints, and at the same time, you have your probability of error of ten to the

minus five.

So what would be an obvious choice for T?

4



AUDIENCE: [INAUDIBLE]

PROFESSOR: Right. So the first idea is you are given a certain amount of bandwidth, and you

clearly want send your signals as fast as possible in order to get excellent data rate.

Now because you have a certain amount of bandwidth, what Nyquist's criteria tells

you is that you want to have zero ISI. And if you want to have zero ISI, what you do

know is that the symbol interval should be greater than or equal to 1 over 2W. You

cannot signal at a rate faster than one over T, and so if we look at this, it's 1 over 2

times 10 to the 6.

Now it I do use this particular value of T, then what's my alpha going to be? Well,

alpha is simply the energy per symbol. So I know alpha squared is the power that I

have times the symbol interval, T. It's just a definition. This comes from

orthonormality of the PAM system that we have. Now P is one, because that's what I

specified as a system specification, so this is just T, which is one over times ten to

the six. So I can select this value of alpha and this value of T.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Well, alpha squared is energy per symbol. So what will that be? What's the energy

per symbol, if you're sending every T seconds, and if you have a power of P? Es,

that I mentioned last time, or energy per two dimensions. So in PAM, it will be

energy per symbols. In that case, it will be 2P.

OK. But now if I select these values of alpha and T, will my system work? Is this a

reasonable design, or is there something wrong here? I'm clearly satisfying my --

AUDIENCE: [INAUDIBLE]

PROFESSOR: The probability of error, right, exactly. So in fact, I do know how to calculate it, right?

What's the probability of bit error? Well, we saw that last time it was Q of root 2 Eb

over N_0. Eb is same as alpha squared, because we have one bit per symbol. So

alpha squared is this quantity here, 1 over 2 times 10 to the 6. So this is Q of square

root of -- so 2 alpha squared is 10 to the 6, 1 over 10 to the 6. N_0, I know, is ten to

5



the minus six, so this is actually Q of 1. And if I do calculate that, it's like 17 percent,

which is nowhere close to ten to the minus five.

So any suggestions on how I can improve my system?

AUDIENCE: Increase T [INAUDIBLE]

PROFESSOR: Increase T, right? What's happening right now is -- the reason we selected this

value of T in the first place is because we wanted to send our signals as fast as

possible avoid ISI, but that's just one of criteria in my system, right? I have to also

satisfy this probability of error criteria, so I want to make sure my probability of error

is going to be small.

If I look at the expression for probability of error, it doesn't really look at T. All it

looks at is this ratio of Eb/N0, right? So if I want to reduce my probability of error, I

have to increase my energy per bit. Now my energy per bit is P times T, so the only

hope of increasing my energy per bit will be to increase T, which means I have to

signal at a slower rate.

OK? So we have probability of -- let's write the calculation down. It's ten to the

minus five. Last time, we saw that the best way to solve this is to look at the

waterfall curve, and EbN_0 in this case is approximately 9.6 dB. I will say that that's

approximately ten on the linear scale. So this implies that energy per bit is ten to the

minus five. So energy per bit is P times T, in this case, it's ten to the minus five. p is

one, so this implies that t is ten to the minus five. So I can send one bit every ten to

the minus five seconds. So my rate that I achieve -- just write it here -- which is ten

to the five bits per second. OK?

If you compare this to the Shannon limit, the Shannon limit is right here, you have

ten to the six bits per second. So you lose by a factor of ten in your data rate if

you're going to use an uncoded 2-PAM system. So what this example tells you is

that if you're going to do more sophisticated cording, you can gain up to a factor of

ten in your data rate.

So if the 10 dB did not really impress you last time, hopefully this example throws

6



more light on the value of coding. Are there any questions on this example?

AUDIENCE: Since the -- since we are signaling at a faster rate now, instead of using sink

process, we can use something better.

PROFESSOR: That's a very good point, yes. Well, if you look at the nominal bandwidth here, it's 1

over 2T, right? T is 10 to the minus 5 seconds, so this says 1 over 2 times 10 to the

minus 5. So it's going to be 5 times 10 to the 4, or 50 KHz. OK? The available

bandwidth you have, the system bandwidth, if you will, is 1 Megahertz. But if you're

going to do Nyquist's ideal sinks pulses, then you only need 50 KHz of bandwidth in

your system, right?

So one advantage of this system, if you will, is that you're not required to do the

complicated sink pulses. Do not need to send those pulses. You could simply send,

for example, square pulses and, because your bandwidth is such low, you have a

very low complexity system. Of course, the price you pay is you reduce the data

rate by a factor of ten. OK, it's a good point.

In fact, there are many points that will come up in this example if you think about it

later on, so feel free to ask me questions if you think about some issues later on.

Ok. So I think we have motivated the need for coding enough now, so let's look at

our encoder design. So a typical encoder design takes bits in -- we saw this last

time in the context of spectral efficiency -- and produces symbols out.

So I can represent my bits by, say a vector b, and I can represent my symbols by a

vector x. So every sequence of b bits gets mapped to a sequence of N symbols.

Now this output sequence of symbols is not any arbitrary sequence, but it lies in a

set of all possible sequences, which I denote by C. And this set is essentially a set of

permissible output symbol sequences, which I will write by C sub j, which is a vector

in Rn, because there are N symbols being produced. And we can have set up to j, j

goes from 1 to M. So we can have up to M symbols. And note that here, M has to

be equal to 2 to the b, in order to be able to map every sequence of b bits to M

symbols.

7



So this C is known as a codebook, and each C sub j is called a codeword. OK? The

standard definition of an encoder.

Now in today's lecture and half of next week's lecture, we will be seeing at a very

specific case when N equals 1 and 2. In that case, instead of using the letter C, we

will be using a different letter, A. So C, in that case, we'll call it actually a

constellation. So in particular if C is one, it's a PAM constellation. If N is 2, it's a QAM

constellation. And we'll be denoting it by a letter A instead of C.

So A is again, a sequence of symbols a_j, which belongs to Rn, where one is less

than j is less than M. OK, in this case a is a constellation. a_j's are known as

symbols, or sometimes they're also known as signal points in the constellation.

There are a number of definitions that follow from this -- number of properties of the

constellation, rather, that follow. So in particular N is known as the dimension of

your constellation. The number N is this, and here, it's the number of symbol

sequences you output for a sequence of b bits that are in. M is the size of your

constellation. The energy per constellation is given by 1 over M times the

summation the norm of a_j squared, where j goes from one to M. The minimum

distance of your constellation is simply the Euclidean minimum distance between

two points in the constellation. So if you take the norm of a_i minus a_j, and

minimize it over all possible values i and j. The number of nearest neighbors, of the

average number of nearest -- K_min of A is the average number of nearest

neighbors in A.

In addition to this, there are some orthonormalized parameters that you saw last

time. The spectral efficiency, which is in units of bits per two dimensions is 2b over

N. And if you want to eliminate b, we use the relation that b is log M to the base 2

here. And so we have 2 log M to the base 2 over N.

The energy per two dimensions, denoted by Es, is simply 2 over N E(A). So E(A) is

the average energy of your constellation. If you divide it by the number of

dimensions you have, you get energy per dimension, and you multiply it by 2.

8



And finally, the energy per bit is Es over rho, or it can also be expressed as E(A),

which is the energy per symbol over the number of bits per symbol, which is log M

to the base 2.

It might seem like a lot of definitions, but you will see very soon that they have a

very tight interplay among one another, so it's not nearly as overwhelming as it

might seem at the first point.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Yes.

AUDIENCE: Why is [UNINTELLIGIBLE]?

PROFESSOR: Because you have two [UNINTELLIGIBLE] b bits coming in, right, which you map to

each --

AUDIENCE: [INAUDIBLE] There are two [INAUDIBLE] possible sequences, but all of them need

not be used, right?

PROFESSOR: Well, we assume that there is no coding going on before the encoder. So you have

the source code, for which there's a sequence of IID bits, and then they mapped to

a sequence of symbols. So we'll see all of our possible input bits coming in here,

because it's produced by a source code, like a Huffman code. Right? And the idea

here is, perhaps what you're asking is -- this did not span the entire space of Rn.

We want to select these sequences carefully here. Maybe we'll come back to that

later on in the course.

OK, so let's do an example. So the example is, say we have A, which is a 2-PAM

system, and you want to look at this constellation, B, which is denoted by A raised to

K. The definition of A raised to k is it's a sequence of K symbols where each x_i

belongs to A. So this is also known as the K-fold Cartesian product of A.

AUDIENCE: Another question. So it has been pre-decided that b bits will be encoded

[UNINTELLIGIBLE]?

9



PROFESSOR: Right. So this is a specific structure we are imposing on the encoder. So this is the

constellation, and you'll want to study the properties for this constellation. For this

constellation, what's N going to be? What's the dimension going to be?

AUDIENCE: [INAUDIBLE]

PROFESSOR: For B, not A. It's going to be K. Well, the number of points in this constellation, how

many points are there? There are K coordinates. Each coordinate can be plus or

minus alpha. So we have 2 to the K possible points in this constellation. OK? What's

E of A going to be?

AUDIENCE: [INAUDIBLE]

PROFESSOR: K alpha squared. right? Basically, we have K coordinates. The energy for each

coordinate will simply add up. The energy across each coordinate is always going to

be alpha squared. So each point in this constellation has an energy of K alpha

squared. So regardless of how many points we have, the average energy is always

going to be K alpha squared. Does everybody see this?

AUDIENCE: [INAUDIBLE]

PROFESSOR: You're right. Maybe that was the confusion. It's a good thing. Just getting too used

to writing E of A. OK. What's d_min of b going to be?

AUDIENCE: [INAUDIBLE] 2 alpha.

PROFESSOR: 2 alpha. I think everybody had the right idea. So the minimum distance here is two

alpha for A. If we look at this point B, we can fix K minus 1 coordinates for two points

to be the same, they will only differ in one point. And so the minimum distance is

across that point, which is 2 alpha.

What is K_min of B going to be? It's going to be K. For each point -- let's say the

point which has all alphas, we can fix K minus 1 coordinate and find another point

which is different in only one of the coordinates, say the first coordinate. We can do

it for all K different coordinates, so K_min is going to be K for each point, and hence

the average number of nearest neighbors is also K.
10



OK, so now in this case, let's first start with the normalized parameters. That's

always good to start with spectral efficiency. That's 2 log M over N. Well, log of M is

going to be K, so N is going to be K. So this is going to be two bits per two

dimensions, and this is the same as that of the original constellation, A. Your energy

per two dimensions is going to be 2 over N E(B). E(B) is K alpha squared, N equals

K, so this is 2 alpha squared, and that is the same as the original constellation, A.

Finally. energy per bit is Es over rho, so it's 2 alpha squared over 2. So that's alpha

squared, and that's same as the 2-PAM constellation.

So why did I go through all of these calculations? What we see is that the

normalized parameters, rho, Es, and Eb, are the same for the Cartesian product as

for the original constellation. And at some level, that should not be too surprising,

right? Because what I'll be doing in this Cartesian product, we are not really doing

any coding, right?

In this original constellation, we had one bit coming in, and we are mapping it to one

symbol. All we are doing in the Cartesian product is we are taking K bits in and

mapping them to K symbols. So we still have one bit per symbol. The noise is IID,

so it's optimal to two decisions for each of the coordinates independently, and

decide whether that coordinate corresponds to plus alpha or minus alpha. So in

other words, there's nothing gained by doing this Cartesian product.

And we will see, the probability of error expression depends on these normalized

parameters, if we want to look at Pb of E, and so we do not gain anything in terms

of the probability of error, versus EbN_0, trade-off through Cartesian product.

So I'm making the note here because that's the only space I have. So the note is if I

look at probability of bit error versus EbN_0, the curve we saw last time, it is the

same for B and A. You should be able to convince yourself about this, and so there

is really no coding going on here. Are there any questions on this?

Let's look at this problem a bit more carefully now.

11



AUDIENCE: [INAUDIBLE]

PROFESSOR: Yeah.

AUDIENCE: Why [INAUDIBLE]

PROFESSOR: Right.

AUDIENCE: What does he use?

PROFESSOR: Energy per two dimensions. Es will always be energy per two dimensions.

Throughout the course, we'll be using these notations. Eb is the energy per bit, Es is

the energy per two dimensions. And if you want to say energy per symbol, we'll be

using this notation E sub the constellation.

AUDIENCE: Oh. It's not energy per bit.

PROFESSOR: No, this is energy -- B is my constellation. So that's why it's energy of that

constellation, average energy per symbol in that constellation.

OK, so let us consider the special case when K equals 3. So in that case, B is A^q.

So if I look at all possible points in B, they are going to lie on the vertices of a three-

dimensional cube. That's a Cartesian product in three dimensions. And all my

constellations points are basically on the vertices of this cube. The distance here is

going to be 2 alpha. That's the length of each edge in my cube, and that's what B is

going to be. Clearly, the minimum distances is 2 alpha, as we saw before.

Now let me define a different constellation, B prime, and only going to take four

vertices from these possible eight vertices. I'm going to take this vertex here, I'm

going to take this vertex here, this one, and this one. I'm only taking four vertices. If

I want to tell you explicitly what the points are, I need to draw an axis, so I'm simply

drawing the x, y, and z axis here. This is x-axis, this is y-axis, and z-axis. And B

prime is a subset of the points in this three-dimensional Cartesian product. They will

be alpha, alpha, alpha; minus alpha, minus alpha, alpha; alpha, minus alpha, minus

alpha; and let's see, minus alpha, alpha, minus alpha. So two of the coordinates will

be minus alpha here, in these three points, and we have one coordinate all alphas.
12



So this is my B prime. What is the minimum distance going to be for B prime?

AUDIENCE: [INAUDIBLE]

PROFESSOR: 2 over 2 alpha, right? It's basically the length of this edge here. This is 2 alpha, this

is 2 alpha. So it's 2 over 2 alpha. So in other words, by simply selecting a subset of

points, I have been able to increase my minimum distance. Because my minimum

distance is larger, I hope that the probability of error will be smaller as opposed to

the original constellation.

But this comes at the price, right? And what's the price? The spectral efficiency is

smaller, right? What if I look at my spectral efficiency? Well, I'm only sending out two

points, two bits per each point. So two bits, each point takes three dimensions, so

my spectral efficiency is 2 times 2 over 3 bits per two dimensions, or it's 4 over 3

bits per two dimensions. And this is in contrast to the two bits per two dimensions

we had for B.

So in other words, there is a trade-off between your spectral efficiency and the

minimum distance. We'll start with a K-dimensional Cartesian product of A, which

has all points. We took a subset of points, and if we chose them smartly, we were

able to increase the minimum distance, but the price we had to pay was to reduce

the spectral efficiency.

AUDIENCE: Where did this two / three come from?

PROFESSOR: This two here?

AUDIENCE: 2/3, yes.

PROFESSOR: 2/3, I am sending two bits per symbol, right? Each symbol has three dimensions. So

it's 2/3 bit per dimension, or 4/3 bit per two dimension.

OK, so the point was it seems like there is a trade-off between minimum distance

and spectral efficiency. And indeed, this might seem like a reasonable trade-off, and

a lot of coding here that we will be seeing in the early part of the course is indeed
13



motivated by this trade-off. You want to reduce your spectral efficiency in order to

increase your probability of error. And this has in fact been quite a dominant design

principle for a large number of codes that have come up in coding theory.

However, if you look at what Shannon says, Shannon says something quite

different. In Shannon's theorem, all they say is, you have -- if your spectral

efficiency is below a certain amount, then your probability of bit error can be made

arbitrarily small. OK, so what Shannon is saying, it's something much stronger than

this trade-off. It's saying if you reduce your spectral efficiency below a certain

quantity which is finite, then the probability of error can be made arbitrarily small.

There is no statement of minimum distance in this theorem here.

And indeed, if you look at the most modern codes which are capacity approaching,

they are not designed to maximize the minimum distance. They are designed to

work well with some practical decoding algorithms, like the belief propagation of

algorithms and so on. So they are designed on a somewhat different principle than

minimum distance.

But nevertheless, this is quite a powerful tool that we will be using in the early part of

this course. We start with a K-dimensional Cartesian product, select a subset of

points, and we want to increase the minimum distance at the cost of spectral

efficiency. OK. Now are there any questions?

AUDIENCE: [INAUDIBLE]

PROFESSOR: That's a good question. Suppose I have a 2-PAM constellation, then I can easily

write the probability of bit error as a function of Q function. If it is a more

complicated expression, I have to integrate over the decision regions, which we'll be

seeing later on in this lecture. And it's not usually possible to get an exact probability

of error expression. We usually use an in-union bound, to bound it by a pair of

[UNINTELLIGIBLE] error probability. We'll be doing all that just now.

OK. So now let us -- I have talked now enough now about encoder, and we'll be

visiting it very soon, but let us switch gears and talk about the decoder now. OK,

14



what does a decoder do? So the goal of a decoder is the following. You get your

received vector Y, which is X plus N, and from Y, you want to estimate X-hat as a

point in your signal constellation. So you receive a noisy version of X, and you want

to estimate X-hat at the decoder. So this is the architecture of your decoder.

And the goal here is you want to minimize the probability of error. And what's the

probability of error? It's basically probability that X is not equal to X-hat. So that is

your general criteria at the decoder. Now what we'll doing next is basically going

through this exercise to show that this minimum probability of error criteria is

equivalent to a bunch of other criteria.

So the first criteria is the MAP criteria: Maximum A-Posteriori Rule. So our

probability of error is basically -- I can track it as an integral of probability of error

given Y times the density function of Y. So if I want to minimize my probability of

error, I want to minimize each term in this integral. So this implies I want to minimize

probability of error given Y for each possible value of Y. OK?

Now what's that going to be? Well, in order to look at what this term is, suppose I

make a decision. I receive Y, and I decide a symbol a_j is sent. Then what's the

probability of error going to be? My probability of error given Y is going to be 1

minus the probability that I was correct. Probability that I was correct is probability X

equals a_j, given Y. This follows from the definition.

So if I want to minimize my probability of error given Y, I want to actually choose an

a_j that maximizes the probability of a_j given Y. So this implies, choose a_j. And

this is known as the MAP rule. So the idea behind the MAP rule is to choose the

symbol in the constellation that maximizes the posterior probability, given the

received symbol.

Now, this MAP rule is equivalent to the maximum likelihood rule, under the

assumption that all the signal points a_j are equally likely. The proof is not hard, you

just use Bayes Theorem for that. So suppose all a_j's are equally likely. Then

probability of a_j given Y, which by Bayes Theorem is the density of Y given a_j,

times the probability of a_j. But since all a_j's are equally likely, I will just write it as 1

15



over M, over the density of Y. Now because Y is fixed, the density of Y is fixed, so

this quantity is just proportional to -- the proportionality symbol -- to the density of Y

given a_j. I won't be writing all the vectors, I might be missing some. But please

bear with me.

So this implies we want to choose a_j that maximizes the density of Y given a_j, and

this is known as the maximum likelihood rule.

And there is one final rule. Basically if the noise is additive Gaussian, then the

density of Y given a_j is simply proportional to E raised to minus the norm of Y

minus a_j squared. So if we want to maximize this quantity, we want to minimize Y

minus a_j squared. So we want to choose a_j that minimizes the Euclidean distance

between Y minus a_j. And this is known as the minimum distance decision rule,

MDD rule. Yes?

AUDIENCE: We are ignoring [UNINTELLIGIBLE]?

PROFESSOR: We are ignoring P value. Because for a given Y, Py is going to be fixed for all

possible choices of a_j. The goal is I'm given Y, and I want to decide which signal

point was set, because that's the probability of error given Y. This is my criteria now.

So Y is fixed, so the density of Y is fixed.

AUDIENCE: [INAUDIBLE]

PROFESSOR: It's basically given by -- in order to find this density, we'll just condition it on a_j, and

sum up over all possible values of a_j. Just take the marginal of Y, right? I mean, to

write this explicitly. I'm writing it here. It's going to be sigma P of Y given a_j that's

the probability of a_j. And this you can find by the Gaussian.

AUDIENCE: But then you have [INAUDIBLE].

PROFESSOR: But this is a summation over all possible a_j's. I should write, sorry -- a_k's. This is

just a summation over all k's, right? So basically, Py is going to be a mixture of

several Gaussians, OK? And it's fixed.

AUDIENCE: [INAUDIBLE]
16



PROFESSOR: Right. OK. So we want to choose the Minimum Distance Decision rule, and I should

have the variance of noise here. OK, so what we have so far is we started with the

Minimum Probability of Error rule, and that's the criteria of your decoder. Be sure

this is equivalent to MAP rule, and that basically comes just from the definition. This

integral here, we want to minimize each term in the integral, and that basically

implies that the Maximum A-Posteriori rule is the best. This implied Maximum

Likelihood rule, and Maximum Likelihood rule comes from the fact that all the signal

points are equally likely. And this implies, then, the Minimum Distance Decision rule,

and that comes from the fact that your noise is Additive Gaussian. So you have an

exponential in the -- you have the Euclidean distance as an exponent, and you want

to minimize the Euclidean distance.

So this is the story we have so far. And it turns out that the Minimum Distance

Decision rule is actually quite nice, because it gives you a lot of geometrical insights.

So say I have three points. We not even draw the coordinates. My constellation, A,

has three points, and let me write them as a1, a2, a3. This is my constellation, for

example. And say I receive a symbol Y. Then the job of the decoder is to figure out

whether I sent a1, a2 or a3.

How will the decoder do that? Well, it will measure the distance from all the three

constellation points and select the one with the smallest Euclidean distance. More

generally, what we want to do is we want to look at the space of all received Y

symbols, and partition it into decision regions. So that if the point falls in a certain

decision region, we say that the constellation point corresponding to that decision

region was sent.

And how do I find the decision region? Well, I start drawing hyperplanes between

every two pair of constellation points. Say I want to find the decision region of point

a1. I draw a hyperplane between a1 and a3, which is given by this line. I draw a

hyperplane between a1 and a2 which is given by this point. And so the region -- the

set of points which are closer to a1 than a2 and a3 is basically bounded by this

region here. So this is my R1.

17



Similarly, if I want to find a decision region for a2 and a3, I will draw this line here.

This will be R2 and this will be R3. So these are my decision regions. So if I want to

write that formally, Rj is my decision region. And it is the set of points Y belong to

Rn, such that the norm of Y minus a_j squared is going to be less than or equal to --

it doesn't matter if you have less than or equal to, because the point

[UNINTELLIGIBLE] bound [UNINTELLIGIBLE] probability zero -- is radius squared.

That's just the definition of Rj.

Now the way to construct Rj was to look at all the half planes which are closer to this

point than any other point, and take the intersection of all the half planes. So in

other words, I can also write Rj to be the intersection of these half planes -- the

intersections over all points, j prime not equal to j -- of Rj, j prime. So Rj, j prime is

your half plane where -- so norm of Y minus a_j prime squared is greater than or

equal to norm of Y minus a_j squared. Note that this is a_j prime, and this is a_j

here.

OK. So it turns out that this decision region has a somewhat nice structure, because

they're intersection of a bunch of half planes, their shape is the convex polytope.

And they're also known by the name Voronoi regions. OK, so these regions are

known as Voronoi regions here.

Now the set of points whose hyperplanes are active in a certain decision region has

a special name, too, and it's called the relevant subset. So in this case, the relevant

subset of a1 is a2 and a3, because both of them have hyperplanes that are active in

the decision region of a1. So let me write that down. So the relevant subset is the

set of points, a_j prime, whose hyperplanes are active in this decision region Rj.

There's a theorem which says that the nearest neighbors are always included in the

relevant subset. It's asserted in your notes. OK?

So now that we have this Minimum Distance Decision rule, let us see if we can get a

hang with the probability of error. Let me see the probability of error, given that I

sent a symbol, a_j. I want the value that probability of error. That's simply the

probability that Y does not belong to Rj, given that I sent the symbol a_j. That's

18



when an error happens. That's same as probability that the noise vector -- because

Y is a_j plus N now -- does not belong to the Rj minus a_j, and the noise is

independent of a_j so I remove the conditioning. And that is 1 minus the probability

that the noise does belong to Rj minus a_j.

If I want to find this integral, find this expression, I will integrate over the region Rj

minus a_j, of the density of the noise, dN. No note that the noise has a spherical

symmetry, but unfortunately despite that, the integral is not a straightforward

integral, because this region here has sharp edges. The decision region is a convex

polytope, so it's typically something like this, and if this was your point, a_j, your

noise does have a spherical symmetry about these spheres, but when it intersects

the decision boundary, things get ugly. And so this decision -- this is not a nice

integral in general.

And so unfortunately, there is not much progress we can make beyond this point for

the exact probability of error expression, but we can say some nice geometrical

properties about the probability of error.

The first property is that probability of error is invariant to translations. And this

should be quite obvious. You have, say, a constellation with two points here, and

say I subtract off the mean. So I get a different constellation whose points are like

this. This is my constellation, A, and this is my constellation, A prime. The probability

of error will be same for the two constellations because the decision regions will

have the same distance from both the points. This should be quite obvious.

And basically, what this really says is if I have any constellation, I can always

subtract off the mean, and get another constellation with the same probability of

error, but with smaller average energy. And so this implies that any optimal

constellation will have zero mean.

The second point is, the probability of error is invariant to orthonormal rotations. So

if I had, say, one point, one constellation, with these four points, and I rotate it by 45

degrees, what I get is another constellation with these four points. And both these

constellations are simply rotations of one another, and they have the same

19



probability of error. And the easiest way to see that is the decision regions here are

simply the four quadrants. And if I want to integrate my probability of error, I will be

integrating it over this region.

Here, my decision regions will be these 45 degree lines. And if I want to integrate

the probability of error for this point here, it will be given by noise, which is

symmetric about these circles. Basically, since the noise is invariant to orthonormal

rotations, it should be quite obvious that the probability of error is invariant to

rotations.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Any rotation, right.

AUDIENCE: So what do you mean by [UNINTELLIGIBLE]?

PROFESSOR: Basically, you're preserving the distance. So you're just rotating the point, not

scaling it.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Unitarily. OK? I mean you will be proving these properties in the next homework,

which is just handed out.

AUDIENCE: So those [UNINTELLIGIBLE] hold, because Minimum Distance rule is orthonormal,

right? And that's because you assume Gaussian --

PROFESSOR: Because you assume Gaussian noise.

AUDIENCE: So that's the only assumption we make?

PROFESSOR: Right.

AUDIENCE: -- for those [INAUDIBLE], right?

PROFESSOR: I think so.

AUDIENCE: Why [INAUDIBLE] constellation must have zero mean?

20



PROFESSOR: Because if I have any constellation, there's a certain probability of error, right? Can

always subtract out the mean from the constellation, I get a new constellation with a

smaller average energy with the same probability of error.

AUDIENCE: Oh, so in terms of [INAUDIBLE]

PROFESSOR: Right. If you're looking at a trade-off of probability of error versus energy, usually

what we look at. So maybe that's a good point. I should just mention it. For

probability of error versus -- we're looking at this trade-off here.

Ok. The next idea is to basically bound the probability of error by a union bound,

because we cannot compute an exact expression for the probability of error, so we

might as well compute a bound which is tractable. So we'll look at what is known as

the pairwise error probability.

So the idea behind pairwise error probability is suppose I send a point, a_j, what is

the probability that instead of a_j at the receiver, I decide that a_j prime was sent.

This is the pairwise error probability. So geometrically, say a_j and a_j prime are

two points here. Let me draw some coordinate axis here. And say I sent point a_j,

and there is noise on the channel, that takes me to this point. So this is my Y, and

this is the noise vector. OK?

And now what I want to know is under what conditions will I decide a_j prime over

a_j. What is the probability of deciding a_j prime over a_j? So let's draw a line

joining a_j prime and a_j. So how would I decide -- suppose I receive this point, Y,

and I wanted to decide between a_j and a_j prime. What would be my decision

rule?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Uh-huh.

AUDIENCE: [INAUDIBLE]

PROFESSOR: You select --

21



AUDIENCE: [INAUDIBLE] a_j prime.

PROFESSOR: Exactly. An equivalent way of saying it is to project Y onto this line, a_j prime minus

a_j. We take two projections, one orthonormal to the line, one along on the line, and

receive this projection. This is a straight line like this. Let's call it n tilde. I should

change my chalk, it's getting too blunt now. This projection here is closer to a_j

prime or a_j.

So in other words, this probability of error is same as the probability that this n tilde,

which is the projection of Y onto a_j prime minus a_j, is greater than or equal to the

norm of a_j prime minus a_j over 2. OK, now why did I use the notation n tilde here?

Because the projection Y onto a_j, which is this. n tilde is same as the projection of

the noise onto a line joining a_j prime minus a_j. So n tilde, I can write it as

projection of N onto a_j prime minus a_j over the norm.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Sorry?

AUDIENCE: Why, exactly?

PROFESSOR: You can just see geometrically, right? This is a 90 degree here. This is the noise. If I

project the noise, it will be this component here.

AUDIENCE: [INAUDIBLE]

PROFESSOR: All right. This should be 90, I'm sorry. This is 90. I'm messing things up. OK, this is

the noise here. This noise, if I project it onto a_j prime minus a_j, it's going to be this

component. This is Y, if I project it, it's the same component.

Now, if the noise is IID with variance sigma squared in each coordinate, we are

simply projecting the noise onto one orthonormal vector. So n tilde is also Gaussian,

with zero mean variance sigma squared. So we can use that to find this probability

of error. So in that case, the probability of error -- I should write this -- probability of

a_j prime going to a_j is simply probability that this Gaussian is greater than some

22



distance, and that's Q of norm of a_j prime minus a_j over two sigma. Yes?

AUDIENCE: What is sigma?

PROFESSOR: So the noise vector is IID, in each of the components, and has a variance of sigma

squared. Sigma is basically N_0 over 2, if your noise is flat with -- so let me just

write that down, sigma squared is N_0 over 2. If you have an AWGN channel, and

you project it on each orthonormal signal, that's what you get.

AUDIENCE: What if you project the noise vector on [INAUDIBLE] why is [INAUDIBLE] you don't

have --

PROFESSOR: So you have a noise vector. If you have a Gaussian vector, and you project it onto

an orthonormal basis --

AUDIENCE: Yes. But [INAUDIBLE] normal?

PROFESSOR: Right. [INAUDIBLE] We are only projecting out on one vector which you need now.

AUDIENCE: So then you're saying -- OK, yeah. The assumption is the noise is symmetric in all

dimensions?

PROFESSOR: Right. Let's do this algebraically, so you're convinced that there is no magic I'm

doing here. So we can write this as you said, as the probability that the norm of Y

minus a_j squared is greater than norm of Y minus a_j prime squared, given that Y

[UNINTELLIGIBLE] a_j, so Y is a_j plus the noise vector. So I sub in for Y. What I

get is probability that Y is a_j plus N. So here I have norm of N squared is greater

than or equal to norm of a_j plus N minus a_j prime squared. And since the only

random variable here is this noise, N, I can remove the conditioning

[UNINTELLIGIBLE] down there. Let me expand this second norm term there. That's

basically the norm of a_j minus a_j prime squared plus the norm of N squared

minus two times the projection of N -- or rather, the inner product of N -- and a_j

prime minus a_j.

So this is the probability that the inner product of N and a_j prime minus a_j is

greater than or equal to norm of a_j prime minus a_j squared over 2. If you divide
23



by the norm of a_j prime minus a_j, you get the same expression as we had. So it's

the same thing. This was done geometrically, this is done algebraically. So this is

the expression of the probability of error, and this is Q of the norm of a_j prime

minus a_j over 2 sigma.

So now that we have the pairwise error probability, we can use it to bound the

probability of error given a_j. Well by definition, the probably of error given a_j is

simply the probability of the union of all the possible error events of the a_j goes to

a_j prime over all possible j prime, not equal to j. This by the union bound is less

than or equal to the summations of the probability that a_j goes to a_j prime. That's

just using union bound. And now I can sub that expression over from there. This is

the same as..So the summation is over j prime not equal to j times Q of the norm of

a_j prime minus a_j over 2 sigma.

Now let me write the summation in a different way. I'm going to write the summation

over all possible distances which belong to the set of distance, times K_D of a_j,

times Q of D over 2 sigma. Where the set D is the set of all possible distances from

a_j. Ok? And K_D of a_j is the number of points at distance D from a_j. That's just a

straightforward change of variables.

Now if you look at this expression, then Q of B over 2 sigma basically behaves like

an exponential, for an algebra use of the argument. So recall that Q of X is like half

E to the minus X squared over 2, for X much larger than 1. So what you are really

seeing here is that you have a sum of a bunch of exponentials, each written by this

term, K_D of a_j.

Now if you think about the argument being large, then when you have a sum of

exponentials, the term with the smallest exponent will dominate, because they are

all decreasing exponentials. So this term can be written as approximately K_min of

a_j times Q of d_min over 2 sigma. So what I am doing is I'm only picking up one

term from this summation.

So far, we have a strict upper bound here, so this summation is a strict upper bound

on the probability of error given a_j, But now what I am doing is I'm only going to
24



keep one term in the summation, the term which has the smallest exponent here.

So I'm looking at the smallest value of D in this set of possible distances from a_j.

AUDIENCE: So you're just looking at the nearest neighbor.

PROFESSOR: You're looking at essentially the nearest neighbor, geometrically speaking. And this

approximation actually works quite well in practice. It's not a bound on the

probability of error given a_j, but it's an approximation. And why did I do this? Well,

if I want to look at the probability over all error, what's that going to be? It's going to

be the average over all possible a_j's of probability of error given a_j.

Now, so I want to take an average of this quantity. So this is a constant. So I will just

take the average over this, and that's going to be K_min of the constellation, which

is the average number of nearest neighbors, times Q of D_min over 2 sigma. This is

approximate here. So this is an approximation that will be used, and it's a very

useful approximation, and it is known as the Union Bound Estimate.

It's no longer a bound on the probability of error, it's an estimate. And in fact, there

is a homework problem where you will be showing that the Union Bound Estimate is

in fact exact for an M-PAM constellation. And I will let you think why that is the case.

I was going to do it, but then I realized it's a homework problem, so you might as

well spend some time on it.

So the last thing that I wanted to do today is find a lower bound on the probability of

error. So if I look at probability of error, it's a union of bunch of the events.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Yes.

AUDIENCE: [INAUDIBLE] That union should be with a_j prime.

PROFESSOR: The union should be with a_j -- yeah. It's not what I have? So I'm taking a union

over all possible events, but a_j's confused with a_j prime.

AUDIENCE: [INAUDIBLE] a_j going to union j prime not equal to j, a_j prime.

25



PROFESSOR: Oh, I see.

AUDIENCE: I think you need parentheses around the --

AUDIENCE: Brackets around the --

AUDIENCE: [INAUDIBLE] another set of parentheses behind the event a_j going to a_j prime.

Because that's the event you were talking about there. At least that's [INAUDIBLE]

PROFESSOR: So you are saying that --

AUDIENCE: Put parentheses after the u.

PROFESSOR: After the u. Like this?

AUDIENCE: Yeah, right. That's the event.

PROFESSOR: Right. That's what I meant. OK, fine. Fair enough.

OK, so basically, the lower bound is actually quite simple. All I'm going to do is only

take one event from that union. I'm only going to take one point, which is the

minimum distance from a_j. So probability of error given a_j is greater than or equal

to probability that a_j goes to a_j prime, where now a_j prime is the nearest

neighbor of a_j. And this we know from PAM analysis is simply Q of d_min over 2

sigma.

So this is a strict lower bound on the probability of error, and it has the same

exponent as the Union Bound Estimate. Of course, if I want to find the overall

probability of error, I can just take an average of this. Since this is fixed, it's going to

be the same quantity. So far what we have is a strict upper bound on the probability

of error, which is this quantity here, a union bound estimate, and we have a lower

bound on the probability of error.

In the next lecture, we will be looking at how to use these bounds to compute a

probability of error for small signal constellations, and quantify the performance

trade-off of the probability of error versus the EbN_0 and so on. I think this is a
26



natural point to stop. It's almost time now.

27


