
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.453 Quantum Optical Communication

Problem Set 7

Fall 2016

Issued: Thursday, October 20, 2016 Due: Thursday, October 27, 2016

Problem 7.1

Consider a single mode of a quantized electromagnetic field, viz., âe−jωt/
√
ATo for

(x, y) ∈ A and 0 ≤ t ≤ To with A being a region in the z = 0 plane of area A. In
class we have assumed that when this mode in unexcited it is in its vacuum state,
|0〉. Strictly speaking this is not true if the field is in thermal equilibrium at absolute
temperature T . Here we shall develop the quantum state that prevails in thermal
equilibrium.

Let Pn be the probability that this field mode is in the number state |n〉. Statistical
mechanics teaches that in thermal equilibrium this probability distribution, {Pn : n =
0, 1, 2, . . .}, maximizes the entropy of the system,

∞

S({Pn}) ≡ −
∑

Pn ln(Pn),
n=0

subject to a constraint on the system’s average energy above the ground state, i.e.,
its average energy above the zero-point-fluctuation energy ~ω/2, namely:

∞

~ω〈â†â〉 =
∑

~ωnPn =
n=0

E

(a) Define an objective function,

∞ ∞ ∞

F ({Pn}, λ1, λ2) ≡ − Pn ln(Pn) + λ1

n=0

(

∑

1−
∑

Pn + λ ~2 ωnPn ,
n=0

) (

E −
n=0

)

∑

where λ1 and λ2 are Lagrange multipliers, with the former being dimensionless
and the latter having units (Joules)−1. Show that maximizing S({Pn}) over
the {Pn} subject to the constraints that

∑∞

n=0 Pn = 1 and
∑∞

~n=0 ωnPn = E is
equivalent to maximizing F ({Pn}, λ1, λ2) without constraints.

(b) Show that the maximum of F ({Pn}, λ1, λ2) occurs at,

Pn = e−(1+λ1+n~ωλ2), for n = 0, 1, 2, . . ., (1)

where λ1 and λ2 are used to ensure that
prevail.

∑∞ = 1 and
∑∞

~n=0 Pn n=0 ωnPn = E
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(c) Use
∑∞

n=0 Pn = 1 to eliminate λ1 from Eq. (1).

(d) Use
∑∞

~n=0 ωnPn = E to find E as a function of ~ω and λ2.

(e) Statistical mechanics tells us that λ2 = 1/kT where k is Boltzmann’s constant
(k = 1.38× 10−23 Joules/K) and T is the absolute temperature (in degrees K).
If you use this expression for λ2, your result for E from (d) will become Planck’s
radiation law. Evaluate N ≡ E/~ω, i.e., the average photon number of the
thermal equilibrium state for wavelength λ ≡ 2πc/ω = 1.55µm (the fiber-optic
communication wavelength) and T = 290K (room temperature).

(f) Use the results of (c) and (d) to show that {Pn} is the Bose-Einstein distribution
with mean N , i.e.,

Nn

Pn = , for n = 0, 1, 2, . . .
(N + 1)n+1

Problem 7.2

The density operator for a single-mode quantum field, âIN , that is in thermal equil-
brium at temperature T K is

∞

ρ̂ =
∑

Pn

n=0

|n〉〈n|,

where {Pn} is the Bose-Einstein distribution from Problem 7.1(f) with

1
N = .

e~ω/kT − 1

Suppose that this field mode is the input to a phase-sensitive amplifier whose output
satisfies,

â †
OUT = µâIN + νâIN ,

with µ, ν real, positive, and obeying µ2 − ν2 = 1.

(a) Let âOUT1
≡ Re(âOUT ) and âOUT2

≡ Im(âOUT ). Find 〈âOUT1
〉 and 〈âOUT2

〉.

(b) Find 〈∆â2 2
OUT1

〉 and 〈∆âOUT2
〉.

Problem 7.3

Consider the semiclassical photon-counting√configuration shown in Fig. 1. Here, a
single-mode classical signal field, aSe

−jωt/ AT for (x, y) ∈ A in the z = 0 plane
and 0 ≤ t ≤ T is incident on a unity-quantum-efficiency ideal photodetector whose
area-A photosensitive region is A. Given knowledge of |a 2

S| , the output of this
photon counter, NS, is a Poisson random variable with mean 〈NS〉 = |aS|2. Suppose
that aS = aS1

+ jaS2
, where aS1

and aS2
are statistically independent, identically

distributed, zero-mean, real-valued Gaussian random variables each with variance
N/2.
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0

dt NS

i(t)

Figure 1: Semiclassical photon-counting configuration

(a) Use the results of Problems 1.4 and 1.3 (without rederiving them!) to find the
probability density function of |aS|2.

(b) Use the result of Problem 1.5(a) (without rederiving it!) to find the uncondi-
tional probability distribution of the photon counter, viz., {Pr(NS = n) : n =
0, 1, 2, . . .}.

(c) Use the results of Problem 1.5(c) (without rederiving them!) to find 〈NS〉 and
〈∆N2

S〉. Identify the shot noise and excess noise components of 〈∆N2
S〉.

Problem 7.4

Consider the semiclassical photon-counting configuration from Problem 7.3. Now we
shall assume that aS = αS + nS, where αS is a non-random positive-real number
and nS = nS1

+ jnS2
with nS1

and nS2
being statistically independent, identically

distributed, zero-mean, real-valued Gaussian random variables each with variance
N/2.

(a) Find 〈NS〉, the unconditional mean of the photon count NS.

(b) Find 〈N2
S〉, the unconditional mean-square of the photon count.

Hint: Complex-Gaussian moment factoring implies that 〈|nS|4〉 = 2〈|nS|2〉2.

(c) Combine your answers to (a) and (b) to find 〈∆N2
S〉, and identify the shot noise

and excess noise terms in your expression for this variance.

(d) Find the unconditional probability distribution of the photon counter.

Hint: Write the integral of the conditional probability distribution multiplied by
the 2-D Gaussian distribution for aS in polar coordinates, i.e., using aS = rejφ

with r ≥ 0. Integrate over φ and then use,

∫ ∞

dr 2r2n+1I −r2(N+1)/N
0(2

0

|α|r/N)e =

N
n!eα

2/N(N+1)

(

N + 1

)n+1

Ln

(

− α2

,
N(N + 1)

)

for α real and n = 0, 1, 2, . . . ,
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where I0(·) is the zeroth-order modified Bessel function of the first kind, and

n
∑

(

n
)

xm

L m
n(x) ≡ (

m=0

−1)
n−m

,
m!

is the nth Laguerre polynomial.
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