Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.453 QUANTUM OPTICAL COMMUNICATION

Mid-Term Examination Fall 2016

This examination is closed book except for one $8 \ 1/2 \times 11$ handwritten formula sheet (both sides) of your own devising.

Problem 1 (20 points)

For each statement below, indicate whether it is True or whether it is False, and provide a brief explanation of your reasoning.

(a) (10 points) Consider a pair of single-mode electromagnetic fields, with annihilation operators \hat{a}_A and \hat{a}_B , whose joint state $|\psi\rangle_{AB}$ is a pure state. Suppose that the $\hat{N}_A = \hat{a}_A^{\dagger} \hat{a}_A$ and $\hat{N}_B = \hat{a}_B^{\dagger} \hat{a}_B$ measurements are made on these modes and that the resulting classical outcomes, N_A and N_B , have measurement statistics which satisfy

$$\operatorname{Var}(N_A - N_B) < \operatorname{Var}(N_A) + \operatorname{Var}(N_B),$$

where $Var(\cdot)$ denotes variance.

True or False: The joint state of the \hat{a}_A and \hat{a}_B modes *must* be non-classical.

(b) (10 points) Consider a single-mode electromagnetic field with photon annihilation operator \hat{a} whose Wigner distribution is $W(\alpha^*, \alpha)$.

True or False: The function $F(\alpha_1) \equiv \int_{-\infty}^{\infty} d\alpha_2 W(\alpha^*, \alpha)$, where α_1 and α_2 are the real and imaginary parts of α , is non-negative for *all* values of α_1 .

In case you've forgotten:

$$W(\alpha^*, \alpha) = \int \frac{\mathrm{d}^2 \zeta}{\pi^2} \, \chi_W(\zeta^*, \zeta) e^{\zeta^* \alpha - \zeta \alpha^*}$$

where $\chi_W(\zeta^*,\zeta) \equiv \langle e^{-\zeta^* \hat{a} + \zeta \hat{a}^\dagger} \rangle$, and

$$\int \frac{\mathrm{d}\alpha_2}{\pi} \, e^{2j\zeta_1\alpha_2} = \delta(\zeta_1)$$

where $\delta(\cdot)$ is the impulse function.

Problem 2 (40 points)

Consider the asymmetric beam-splitter setup shown in Fig. 1. In this setup, the beam spitter is illuminated by a signal mode (with annihilation operator \hat{a}_S) and a local-oscillator (LO) mode (with annihilation operator \hat{a}_{LO}). We will be interested in the output mode from that beam splitter whose annihilation operator is $\hat{a}_{out} = \sqrt{\epsilon} \hat{a}_S + \sqrt{1-\epsilon} \hat{a}_{LO}$, where $0 < \epsilon < 1$ and the \hat{a}_{LO} mode is in the coherent state $|\beta \sqrt{\epsilon/(1-\epsilon)}\rangle_{LO}$.

$$\hat{a}_{S} \implies \hat{a}_{\text{out}} = \sqrt{\epsilon} \, \hat{a}_{S} + \sqrt{1 - \epsilon} \, \hat{a}_{\text{LO}}$$

$$\hat{a}_{\text{LO}}$$

Figure 1: Asymmetric beam-splitter setup.

- (a) (10 points) Suppose that the \hat{a}_S mode is in the coherent state $|\gamma\rangle_S$.
 - (i) With only a *simple* statement of justification, find the state of the \hat{a}_{out} mode.
 - (ii) Use your result from (i) to find $\rho_{a_{\text{out}}}^{(n)}(\alpha^*, \alpha) \equiv {}_{\text{out}}\langle \alpha | \hat{\rho}_{a_{\text{out}}} | \alpha \rangle_{\text{out}}$ in the limit $\epsilon \to 1$.
- (b) (10 points) Figure 2 uses the beam-splitter setup in a photon-counting communication receiver with the following characteristics.
 - The binary message b being communicated is equally likely to be 0 or 1.
 - When b = 0, the \hat{a}_S mode is in the coherent state $|-\sqrt{N_S}\rangle_S$. When b = 1, the \hat{a}_S mode is in the coherent state $|\sqrt{N_S}\rangle_S$.
 - The beam-splitter setup has $0 < \epsilon < 1$ and $\beta = \sqrt{N_S}$.
 - The receiver's output is $\tilde{b} = 1$ when the $\hat{N}_{out} = \hat{a}^{\dagger}_{out}\hat{a}_{out}$ measurement's outcome N_{out} is non-zero. The receiver's output is $\tilde{b} = 0$ when $N_{out} = 0$.
 - (i) Use your result from (a) to find the states that the \hat{a}_{out} mode is in when b = 0 and b = 1.
 - (ii) Use your results from (i) to find the receiver's error probability, $\Pr(\tilde{b} \neq b)$.

Figure 2: Photon-counting communication receiver.

- (c) (10 points) Now, let the \hat{a}_S mode be in an *arbitrary* state specified by the density operator $\hat{\rho}_S$.
 - (i) Find $\chi_A^{\rho_{a_{out}}}(\zeta^*, \zeta)$, the anti-normally ordered characteristic function of the \hat{a}_{out} mode. Your answer should be expressed in terms of the \hat{a}_S mode's anti-normally ordered characteristic function, β , and ϵ .
 - (ii) Specialize your result from (i) to the limit $\epsilon \to 1$.
- (d) (10 points) For your $\chi_A^{\rho_{a_{\text{out}}}}(\zeta^*,\zeta)$ from (c), use the operator-valued inverse transform relation,

$$\hat{\rho}_{a_{\text{out}}} = \int \frac{\mathrm{d}^2 \zeta}{\pi} \, \chi_A^{\rho_{a_{\text{out}}}}(\zeta^*, \zeta) e^{-\zeta \hat{a}_{\text{out}}^\dagger} e^{\zeta^* \hat{a}_{\text{out}}},$$

to obtain $\rho_{a_{\text{out}}}^{(n)}(\alpha^*, \alpha) \equiv {}_{\text{out}}\langle \alpha | \hat{\rho}_{a_{\text{out}}} | \alpha \rangle_{\text{out}}$ in the $\epsilon \to 1$ limit. Your answer should be expressed in terms of $\rho_S^{(n)}(\alpha^*, \alpha) \equiv {}_S\langle \alpha | \hat{\rho}_{a_S} | \alpha \rangle_S$, and β .

Problem 3 (40 points)

The system shown in Fig. 3 is a quantum non-demolition (QND) setup for measuring the photon number of an optical mode with annihilation operator \hat{a} . The cross-Kerreffect box has the following input-output relation:

$$\hat{c} = e^{j\kappa \hat{a}^{\dagger}\hat{a}}\hat{b}$$
$$\hat{d} = e^{j\kappa \hat{b}^{\dagger}\hat{b}}\hat{a},$$

where $\kappa > 0$ is a constant. The homodyne detector is set up to measure the $\hat{c}_2 = \text{Im}(\hat{c})$ observable.

Figure 3: Quantum non-demolition detection setup.

(a) (10 points) Evaluate the number-ket matrix elements,

$$_{b}\langle n_{b}|_{a}\langle n_{a}|e^{j\kappa\hat{a}^{\dagger}\hat{a}}\hat{b}e^{j\kappa b^{\dagger}b}\hat{a}|m_{a}\rangle_{a}|m_{b}\rangle_{b}$$

and

$$_{b}\langle n_{b}|_{a}\langle n_{a}|e^{j\kappa\hat{b}^{\dagger}\hat{b}}\hat{a}e^{j\kappa\hat{a}^{\dagger}\hat{a}}\hat{b}|m_{a}\rangle_{a}|m_{b}\rangle_{b}.$$

- (b) (10 points) Assume that the \hat{a} mode is in the number state $|m_a\rangle_a$. Let N_d be the outcome of the $\hat{N}_d = \hat{d}^{\dagger}\hat{d}$ measurement. Find the probability mass function $\Pr(N_d = n)$. Hint: You do *not* need to know the state of the \hat{b} mode.
- (c) (10 points) Assume that the \hat{a} mode is in the number state $|m_a\rangle_a$ and the \hat{b} mode is in the coherent state $|\sqrt{N_b}\rangle$. Find $\langle \hat{c}_2 \rangle$ and $\langle \Delta \hat{c}_2^2 \rangle$, the mean and variance of the \hat{c}_2 measurement.
- (d) (10 points) Assume that the states of the \hat{a} and \hat{b} modes are as given in (c), and that $\kappa m_a \ll 1$. Let c_2 denote the outcome of the \hat{c}_2 measurement and define $\tilde{N}_a = c_2/\sqrt{N_b} \kappa$ to be the QND estimate of the \hat{a} mode's photon number. Find the mean-squared error of this estimate, i.e., $\langle (\tilde{N}_a m_a)^2 \rangle$.

I'm sure you know these things:

$$\cos(x) = \frac{e^{jx} + e^{-jx}}{2}, \qquad \sin(x) = \frac{e^{jx} - e^{-jx}}{2j}$$

$$\frac{1 - \cos(2x)}{2} = \sin^2(x), \qquad \sin(x) \approx x, \text{ for } |x| \ll 1$$

6.453 Quantum Optical Communication Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.