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Dirac-notation Quantum Mechanics.

Introduction

In Lecture 2 we established the following fundamentals of Dirac-notation quantum
mechanics, as shown on Slides 2–6.

• A quantum-mechanical system S is a physical system governed by the laws of
quantum mechanics.

• The state of a quantum mechanical system at a particular time t is the sum
total of all information that can be known about the system at time t. It is a
ket vector, |ψ(t)〉, in an appropriate Hilbert space H of possible states. FiniteS
energy states have unit length ket vectors, i.e., 〈ψ(t)|ψ(t)〉 = 1.

• For t ≥ 0, an isolated system with initial state |ψ(0)〉 evolves according to the
Schrödinger equation

d
j~
|ψ(t)〉 ˆ= H t
t

|ψ( )〉, for t ≥ 0, (1)
d

ˆwhere H is the Hamiltonian (energy) operator and ~ = h/2π is Planck’s con-
stant divided by 2π. This leads to

|ψ(t)〉 ˆ= U(t, 0)|ψ(0)〉, (2)

ˆwhere U(t, 0) is the unitary time-evolution operator associated with the Schrödinger
equation.

• An observable is a measurable dynamical variable of the quantum system S. It
is represented by an Hermitian operator that has a complete set of eigenkets.
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• For a quantum system S that is in state |ψ(t)〉 at time t, measurement of the
observable

Ô =
∑

on
n

|on〉〈on|, (3)

where {|on〉} are the observable’s orthonormal eigenkets and {on} are its asso-
ciated eigenvalues (assumed to be distinct), yields an outcome that is one of
these eigenvalues according to the probability distribution

Pr(on) = |〈on|ψ(t)〉|2. (4)

If the observable that is measured has a continuum of non-degenerate eigenval-
ues, so that

Ô =

∫ ∞
do o|o〉〈o|, (5)

−∞

where the associated (infinite-length) orthonormal eigenkets are {|o〉}, then the
probability density for obtaining the outcome o is

p(o) = |〈o|ψ(t)〉|2. (6)

Today we will complete our foundational work on Dirac-notation quantum mechanics.
We begin by continuing our treatment of quantum measurement statistics.

Moment Equations for Quantum Measurements

Probability mass functions and probability density functions provide complete sta-
tistical characterizations of discrete and continuous classical random variables, re-
spectively. However, for many applications more limited—and hence incomplete—
statistics will suffice. In particular, if x is a real-valued classical random variable,
then its mean value { ∑

nXn Pr(Xn), for x discrete valued
〈x〉 = ∫ (7)

dX Xp(X), for x continuous valued,

gives us useful information about the deterministic part of x, i.e., its signal compo-
nent. The deviation of x from its mean,

∆x ≡ x− 〈x〉, (8)

is then the random (noise) component of x. It is a zero-mean random variable whose
mean-squared strength is the variance of x,{ ∑

n(Xn − 〈x〉)2 Pr(Xn), for x discrete valued
var(x) = 〈∆x2〉 = ∫ (9)

dX (X − 〈x〉)2p(X), for x continuous valued.
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By the linearity of expectation—which you are familiar with from your probability
prerequisite—we have that

var(x) = 〈x2〉 − 〈x〉2, (10)

a relation that we will use from time to time in performing variance calculations.
Although knowledge of the mean and variance of x is far less information about its
statistics than knowing its full characterization, it is nonetheless sufficient to evaluate
the signal-to-noise ratio,

SNR
〈x〉2≡ , (11)

var(x)

which gives us a quantitative measure of how noisy this random variable is. In
particular, the Chebyschev inequality from probability theory can be cast in the
following form:

Pr

(∣∣∣x− 〈x〉∣ ∣∣∣∣ ≥ δ

)
≤ 1/δ2SNR, for 〈x〉 =6 0 and any δ > 0. (12)

〈x〉

Thus, for example, a random variable with a 60 dB SNR (SNR = 106) has at most a
1% probability of being more than 1% away from its mean value.1

In light of the preceding remarks, you should not be surprised that much of our
study of quantum measurement statistics will be limited to mean values and variances.
To see how to simplify the calculations of these moments for observable measurements

ˆwe turn to Slide 7. Suppose O has a discrete eigenvalue spectrum, with distinct
ˆeigenvalues. The mean value of the O measurement at time t is then

〈Ô〉 ≡
∑

on Pr(on) =
∑

on|〈on|ψ(t)〉|2 =
∑

on n

n

〈ψ(t) o
n n

|on〉〈 |ψ(t)〉 (13)

= 〈 ˆψ(t)|

(∑
on|on〉〈on|

)
|ψ(t)〉 = 〈ψ(t)

n

|O|ψ(t)〉, (14)

so that it can be calculated without explicitly evaluating Pr(on). You should verify
that higher-order moments for this observable can be found via,2

〈Ôk〉 ≡
∑

okn Pr(on) = 〈ψ(t)|Ôk|ψ(t)〉, for k = 2, 3, . . . , (15)
n

and thus

ˆ ˆvar(O) 〈 ˆ ˆ ˆ ˆ= ∆O2〉 = 〈O2〉 − 〈O〉2 = 〈ψ(t)|O2|ψ(t)〉 − 〈ψ(t)|O|ψ(t)〉2. (16)

1The Chebyschev inequality is very general, and so it is very weak. If x is a Gaussian random
2

variable, then we have that the probability in (12) is no more than e−δ SNR/2, which is far smaller
than 1/δ2SNR when δ2 SNR� 1.

2 ˆTo do so you will want to show that Ok = n o
k
n|on〉〈on|, which follows from the eigenket-

ˆeigenvalue relation for O.

∑
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The corresponding results for an observable whose eigenvalue spectrum is the contin-
uum −∞ < o <∞ and non-degenerate are found in a similar manner,3

〈Ôk〉 =

∫ ∞ ∞
do okp(o) =

∫
do ok|〈o|ψ(t)〉|2 (17)

−∞ −∞

=

∫ ∞ ∞
do ok〈ψ(t)|o〉〈o|ψ(t)〉 = 〈ψ(t)|

(∫
do ok|o〉〈o|

−∞ −∞

)
|ψ(t)〉 (18)

= 〈ψ(t)|Ôk|ψ(t)〉, for k = 1, 2, 3, . . . (19)

From this result it follows that Eq. (16) can also be used for observables whose
eigenvalue spectra are continuous.

Schrödinger versus Heisenberg Pictures

First treatments of quantum mechanics—including what we have done so far—almost
invariably take the Schrödinger equation route to characterizing the time evolution
of a quantum system. Here, for an isolated system, the state vector evolves in time
but the observables are time-independent operators. Ultimately, we’d like to have ap-
propriate quantum versions for Maxwell’s equations. Here, the electric and magnetic
fields should be (3-D vector) observables that evolve in space and time. Then, for a
quantized electromagnetic wave propagating in a source-free region of empty space,
we would expect that the state vector should be constant if no measurements are
made. We can convert our Dirac-notation quantum mechanics to an approach that
has observables evolving in time and state vectors that are constants by going to the
Heisenberg picture. We’ll make that change today, after which we will stick with the
Heisenberg picture for the rest of the semester.

Consider the descriptions given on Slide 8 for the Schrödinger and Heisenberg
pictures of an isolated quantum system S for t ≥ 0. The Schrödinger picture has

ˆ ˆtime-independent observables {OS}, including its Hamiltonian HS, and, between
measurements, a time-dependent state vector, |ψ(t)〉S, that evolves according to
the Schrödinger equation. Here, we are using the S subscript to emphasize that
this is Schrödinger picture. Using the H subscript to denote Heisenberg picture, we
have that observables, {ÔH(t)} ˆ, including the Hamiltonian HH(t), now, in general,
evolve in time—according to some appropriate equations of motion that we will soon
determine—and, between measurements, the state vector, |ψ〉H is constant. These
two pictures must be equivalent, i.e., a measurement made on the quantum system
S at some time t ≥ 0 must have the same statistics predicted from both of these
pictures. At the initial time, t = 0, this will automatically occur because we will take

ˆ ˆ ˆ ˆOH(0) = OS, HH(0) = HS, |ψ〉H = |ψ(0)〉S. (20)

3 ˆHere, the∫ eigenket-eigenvalue relation for O can be used to obtain the necessary intermediate
ˆresult Ok =

∞
do ok−∞ |o〉〈o|.
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For t > 0 we need to evolve the Heisenberg-picture observables so that the mea-
surement statistics come out in agreement with what we already know from the
Schrödinger picture description of quantum measurement.

ˆSuppose that OS is a Schrödinger-picture observable with discrete, non-degenerate
eigenvalues {on} and orthonormal eigenkets {|on〉S}, so that

ÔS =
∑

on
n

|on〉SS〈on|. (21)

Because these eigenvalues are the possible outcomes of a measurement of this observ-
able, they must also be eigenvalues of the associated Heisenberg-picture observable
ÔH(t), which is why we did not add an S subscript to the eigenvalues in (21). From
Axiom 3, we have that

Pr(on) = |S〈on|ψ(t)〉S|2 = |H〈on(t)|ψ〉H |2, (22)

where the first equality is for the Schrödinger picture and the second is for the Heisen-
berg picture, and we have used

ÔH(t) =
∑

on|on(t)〉HH〈on(t)
n

|, (23)

with {|on(t)〉H} ˆbeing the orthonormal eigenkets of OH(t). It is now simple to see
ˆhow to properly evolve OH(t). From Eq. (22) we have that

〈 | 〉 〈 ˆ ˆPr(on) = S ψ(t) on SS on|ψ(t)〉S = (U(t, 0)|ψ(0)〉S)†|on〉SS〈on|(U(t, 0)|ψ(0)〉S), (24)

ˆwhere U(t, 0) is the time-evolution operator for
ˆ

S. Using |ψ〉H = |ψ(0)〉S and
(U(t, 0)|ψ(0)〉S)† = S〈ψ(0)|U †(t, 0) we get

ˆPr(on) = H〈ψ|[U †(t, 0)| ˆon〉S][S〈on|U(t, 0)]|ψ〉H , (25)

from which it follows that

|on(t)〉 ˆ
H = U †(t, 0)|on〉S, (26)

is how the eigenkets of an observable are converted from the Schrödinger picture to
the Heisenberg picture. You should use this result prove that

ˆ ˆOH(t) = U † ˆ ˆ(t, 0)OSU(t, 0), (27)

as stated on Slide 10.
In practice, we seldom calculate the time evolution of a Heisenberg-picture ob-

servable by first obtaining the unitary time-evolution operator from the Schrödinger
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picture. Instead, we solve a differential equation that directly specifies the Heisenberg-
picture observable’s time evolution. Differentiating Eq. (27) with respect to time, we
find that

ˆdO
j~ H(t)

dt
= j~

dÛ †(t, 0)

dt
ÔSÛ(t, 0) + j~Û †(t, 0)ÔS

dÛ(t, 0)
(28)

dt

= −Û † ˆ ˆ ˆ ˆ ˆ ˆ ˆ(t, 0)HSOSU(t, 0) + U †(t, 0)OSHSU(t, 0), for t ≥ 0. (29)

On Problem Set 3 you will prove that

Û † ˆ ˆ ˆ(t, 0)HS = HSU
† ˆ ˆ ˆ ˆ(t, 0) and HSU(t, 0) = U(t, 0)HS, (30)

whence

ˆdO
j~ H(t) − ˆ ˆ † ˆ ˆ ˆ † ˆ ˆ ˆ= HSU (t, 0)OSU(t, 0) + U (t, 0)OSU(t, 0)HS (31)

dt

ˆ ˆ ˆ= OH(t HS − ˆ ˆ ˆ) HSOH(t) = OH(t), HS , for t ≥ 0, (32)

ˆ ˆ ≡ ˆ ˆ

[ ]
where [A,B] AB− ˆ ˆ ˆ ˆBA is the commutator of the operators A and B. Equation (32),

ˆwhich is known as the Heisenberg equation of motion for OH(t), is to be solved subject
ˆ ˆto the initial condition OH(0) = OS.

Commutators play an essential role in quantum mechanics, as we will see momen-
ˆ ˆtarily. Lest you think that all linear operators commute, i.e., satisfy [A,B] = 0, we re-

mind you that forN×N matrices A and B we generally find AB 6= BA.4 As an exam-
ˆ ˆple of the Heisenberg equation of motion, consider its behavior when OH(t) = HH(t),

i.e., when we are interested in finding the Heisenberg picture form of the Hamiltonian.
ˆ ˆ ˆ ˆ ˆBecause [HH(0), HS] = [HS, HS] = 0, we find that dHH(t)/dt|t=0 = 0, from which we

ˆ ˆ ˆcan show that HH(t) = HS = H, i.e., for an isolated system, the Hamiltonian is a
constant in both the Schrödinger and Heisenberg pictures.5 Going forward, we shall
drop the H subscript from Heisenberg picture states and operators, because we will
not be returning to the Schrödinger picture.

Simultaneous Measurements

ˆ ˆLet A and B be two observables of a quantum system S. Saying that these two observ-
ables commute is equivalent to saying that they have a common set of orthonormal

4 2
As a simple example, A =

[
1 2 0

let

]
and let B =

0 −1

[
−1 1

]
. Do the multiplication and

see that AB 6= BA.
5This is hardly surprising. In an isolated system, no energy can be lost or gained, so it’s pretty

obvious that the energy operator (Hamiltonian) must be a constant of the motion.
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eigenkets. So, for the case of discrete distinct eigenvalues we have6

ˆ ˆA =
∑

an
n

|φn〉〈φn| and B =
∑

bn
n

|φn〉〈φn|, (33)

where the {|φn〉} comprise an orthonormal basis for H . Commuting observablesS
may be measured simultaneously . Specifically, if the system is in the state |ψ〉 and we

ˆ ˆmeasure A and B simultaneously, then our outcome will be an ordered pair, (an, bn),
ˆ ˆconsisting of an eigenvalue of A and an eigenvalue of B that are associated with the

same eigenket |φn〉. Assuming that the eigenvalues are distinct, the probability of
this event’s occurring is

Pr(an, bn) = |〈φn|ψ〉|2. (34)

A similar situation prevails if the commuting operators each have continuous eigen-
value spectra with distinct eigenvalues. Then we get that the joint probability density
for the outcome (a, b) is

p(a, b) = |〈φ|ψ〉|2, (35)

where |φ〉 ˆ ˆis the A eigenket with eigenvalue a and it is also the B eigenket with
eigenvalue b.7

The Heisenberg Uncertainty Principle

There is nothing in classical physics that precludes our simultaneously (and precisely)
measuring the position and momentum of a particle, or any other pair of observables.
Such is not the case in quantum mechanics. Commuting observables can be measured
simultaneously. Those that do not commute cannot be measured simultaneously.
Indeed, if

ˆ ˆ ˆ[A(t), B(t)] = jC(t), (36)

ˆwhere C(t) is an Hermitian operator, then

〈 ˆ ˆ ˆ∆A2(t)〉〈∆B2(t)〉 ≥ |〈C(t)〉|2/4. (37)

This result is the Heisenberg uncertainty principle, written in Dirac notation. Before
delving into its proof, let us comment on what it says.

• ˆ ˆIf A(t) and B(t) are non-commuting observables then

ˆ ˆ † ˆ ˆ † − ˆ ˆ ˆ ˆ ˆ ˆ[A(t), B(t)] = [A(t)B(t)] [B(t)A(t)]† = B†(t)A†(t)− A†(t)B†(t) (38)

ˆ ˆ − ˆ ˆ ˆ ˆ= B(t)A(t) A(t)B(t) = −[A(t), B(t)], (39)

6 ˆ ˆYou should verify, using these expansions, that A and B commute.
7The projection postulate applies to simultaneous measurements of commuting observables, but,

as in the single measurement case, it is not of great interest to us because photodetection measure-
ments are usually annihilative.
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ˆ ˆwhere the third equality uses the fact that A(t) and B(t) are Hermitian (because
ˆ ˆ ˆthey are observables). It should then be clear that [A(t), B(t)] = jC(t), where

Ĉ(t) is Hermitian.

• ˆ ˆBecause A(t) and B(t) cannot be measured simultaneously, the terms appearing
on the left in the Heisenberg uncertainty principle have the following interpre-
tations: 〈 ˆ∆A2(t)〉 =

ˆ
〈ψ| ˆ(A(t) − 〈Â(t)〉)2|ψ〉 is the variance that results if we

choose to measure A(t) on the system S when that system is in the state |ψ〉;
likewise, 〈 ˆ ˆ ˆ∆B2(t)〉 = 〈ψ|(B(t) − 〈B(t)〉)2|ψ〉 is the variance that results if we

ˆchoose to measure B(t) on the system S when that system is in the state |ψ〉.
Always remember, in using the Heisenberg uncertainty principle, that this is
an either or proposition, i.e., we cannot make both measurements on S at the
same time.

• The right-hand side of the uncertainty principle is |〈 ˆ ˆC(t) 2/4 = ψ C(t) ψ 2/4,
ˆ ˆ ˆ

〉| |〈 | | 〉|
so that if C(t) = cI, where c is a non-zero scalar and I is the identity operator,
then all states |ψ〉 have the same non-zero lower bound on the product of their
ˆ ˆA(t) and B(t) measurement variances. This will turn out to be the case for
the quadrature components of the quantum harmonic oscillator, as we shall see
next week.

Proof of the Uncertainty Principle

ˆ ˆThe proof is straightforward. With ∆A(t) ≡ A(t)−〈Â(t)〉 ˆand ∆B(t) ≡ B̂(t)−〈B̂(t)〉,
we can multiply out to verify that

ˆ ˆ ˆ[∆A(t),∆B(t)] = jC(t). (40)

Next, we use the Schwarz inequality to show that

〈ψ| ˆ ˆ∆A2(t)| 〉〈ψ| ˆ ˆψ ∆B2(t)|ψ〉 ≥ |〈ψ|∆A(t)∆B(t)|ψ〉|2, (41)

ˆ ˆwith equality if and only if ∆A(t)|ψ〉 = jλ∆B(t)|ψ〉 for some complex number λ.8

Now we encounter a little double-bookkeeping algebra:

|〈ψ| ˆ ˆ∆A(t)∆B(t)|ψ〉|2∣∣ (∣ ˆ ˆ ˆ ˆ ˆ ˆ∣ ∆A(t)∆B(t) + ∆B(t)∆A(t) + [∆A(t),∆B(t)]
= ∣〈ψ| 2

)
|ψ〉

∣∣∣∣∣
2

(42)

=

∣∣∣∣∣〈ψ|
(

∆Â(t)∆B̂(t) + ∆B̂(t)∆Â(t) j
ψ

2

)
| 〉+

2

ˆψ
2
〈 |C(t)|ψ〉

∣∣∣∣∣ . (43)

8We have inserted the j here for later convenience.
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Because the operators in the 〈ψ| · |ψ〉 brackets are Hermitian, these brackets evaluate
to real numbers and so

|〈 | ˆ ˆψ ∆A(t)∆B(t)|ψ〉|2∣∣ (∣ ˆ ˆ ˆ ˆ∣ ∆A(t)∆B(t) + ∆B(t)∆A(t)
= ∣〈ψ|

) 2

ψ
2

| 〉

∣∣∣∣∣ +

∣∣∣∣〈ψ|Ĉ(t)|ψ〉∣
2

2

∣∣∣∣ (44)

≥ |〈ψ|Ĉ(t)|ψ〉|2/4,

∣
(45)

〈 | ˆ ˆwith equality if and only if ψ ∆A(t)∆B(t)|ψ〉 = −〈 | ˆ ˆψ ∆B(t)∆A(t)|ψ〉. Using (45) in
(41) then shows that

〈 ˆ∆A2(t)〉〈 ˆ∆B2(t)〉 ≥ |〈Ĉ(t)〉|2/4. (46)

Combining the equality conditions that were identified in (45) and (41) we see that
equality is achieved in the Heisenberg Uncertainty Principle if and only if

ˆ∆A(t)|ψ〉 ˆ= jλ∆B(t)|ψ〉, for λ a real-valued constant. (47)

States that satisfy this condition, i.e., states that meet the Heisenberg lower bound
on the product of variances for a particular pair of non-commuting observables, are
called minimum uncertainty-product states for those two observables. The minimum
uncertainty-product states for the quadrature components of the quantized single-
mode electromagnetic field are what underlie the waveguide tap that was described
in Lecture 1.

The Road Ahead

Now we have completed the quantum mechanics foundations that we will need for
the entire semester. Next week we begin our treatment of the quantum harmonic
oscillator. We will introduce this topic by quantizing the behavior of an LC circuit.
This will lead us to operators that annihilate and create discrete energy quanta for
the oscillator. Because a single mode of the quantized electromagnetic field is a
quantum harmonic oscillator, these quanta can be thought of as photons and their
associated annihilation and creation operators will be of great significance throughout
the semester.
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