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Introduction

Today we will continue to explore the quadrature measurement statistics of the quan-
tum harmonic oscillator, and use that exercise to introduce the notion of quantum
characteristic functions. These characteristic functions, like their counterparts in clas-
sical probability theory, are useful calculational tools, as we will see later when we
study the quantum noise behavior of linear systems that have loss or gain, i.e., attenu-
ators and amplifiers. Today we will also provide the positive operator-valued measure-
ment (POVM) description for “measuring” the annihilation operator, â. POVMs are
extremely important in quantum information science, in that they are more general
than observables. Lest you think that they are mere mathematical generalizations, it
is worth noting now that, for a single-mode optical field, the â POVM has a physical
realization: optical heterodyne detection.

Quadrature-Measurement Statistics

Tables 1 and 2 summarize most of what we have learned so far about quantum har-
monic oscillator’s quadrature-measurement statistics. Slides 4 and 5 give qualitative
pictures of â1(t) measurements when the oscillator is in a number state or coherent
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State 〈â(t)〉
|n〉 0
|α〉 αe−jωt

|β;µ, ν〉 (µ∗β − νβ∗)e−jωt

Table 1: Mean value of â(t) for number states, coherent states, and squeezed states.
The real and imaginary parts of these table entries are the quadrature-measurement
mean values, 〈â1(t)〉 and 〈â2(t)〉, respectively.

State 〈∆â21(t)〉 〈∆â22(t)〉
|n〉 (2n+ 1)/4 (2n+ 1)/4
|α〉 1/4 1/4
|β;µ, ν〉 |µ− νe−2jωt|2/4 |µ+ νe−2jωt|2/4

Table 2: Quadrature-measurement variances for number states, coherent states, and
squeezed states.

state (Slide 4), or an amplitude-squeezed or phase-squeezed state (Slide 5). In ad-
dition to these results, we also know—from our wave function analysis of minimum
uncertainty-product states—that the probability density functions for the quadrature
measurements are Gaussian, when the oscillator is in a coherent state or a squeezed
state. We have yet to determine what this probability density is when the oscillator is
in a number state, nor have we given a very clear and explicit description for the phase
space pictures shown on Slides 4 and 5. We will remedy both of these deficiencies by
means of quantum characteristic functions.

Quantum Characteristic Functions

It is appropriate to begin our discussion of quantum characteristic functions by step-
ping back to review what we know about classical characteristic functions. Suppose
that x is a real-valued, classical random variable whose probability density function
is px(X).1 The characteristic function of x,

Mx(jv) ≡ 〈ejvx〉 =

∫ ∞
dX ejvXpx(X), (1)

−∞

1Probability density functions (pdfs) are natural ways to specify the statistics of a continuous
random variable. However, if we allow pdfs to contain impulses, then they can be used for discrete
random variables as well. Hence, although we have chosen to use pdf notation here, our remarks
apply to all real-valued, classical random variables.
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is equivalent to the pdf px(X) in that it provides a complete statistical characterization
of the random variable. This can be seen from the inverse relation,

v
px(X =

∫ ∞ d
)

−∞
Mx(jv)e−jvX . (2)

2π

Indeed, Eqs. (1) and (2) show that px(X) and Mx(jv) are a Fourier transform pair.
On Problem Set 1 you exercised the key properties of the classical characteristic
function, so no further review will be given here. What we shall do is use the char-
acteristic equation approach to determine the quadrature-measurement statistics of
the harmonic oscillator.

Suppose that we measure

â (t) = Re[â(t)] = Re(aeˆ −jωt
1 ) = â1 cos(ωt) + â2 sin(ωt), (3)

where Re(â) = â1 and Im(â) = â2, for some fixed particular value of time, t. Let
a1(t) denote the classical random variable that results from this measurement. Then
the classical characteristic function for a1(t), when the oscillator’s state is |ψ〉, can be
found as follows,

∞
M (jv) =

∫
dα ejvα1 v

a1(t) 1 pa1(t)(α1) = 〈ψ|
(∫ ∞

dα j α1
1 e |α1〉tt〈α1|

−∞ −∞

)
|ψ〉, (4)

where {|α1〉t} are the eigenkets of â1(t), i.e., they are the (delta-function) orthonormal
solutions to

â1(t)|α1〉t = α1|α1〉t, for −∞ < α1 <∞. (5)

Expanding ejvα1 in its Taylor series, we have that(∫ ∞ ∑∞ (jv)n
Ma1(t)(jv) = 〈ψ| dα1

−∞ n=0

αn
n! 1 |α1〉tt〈α1|

)
|ψ〉. (6)

Next, we interchange the order of integration and summation, use the fact that the
{|α1〉t1} diagonalize ân1 (t) for n = 0, 1, 2, . . . , and obtain(∑∞ (jv)n

Ma1(t)(jv) = 〈ψ|
n=0

ân
n! 1 (t)

)
|ψ〉 = 〈ejvâ1(t)〉, (7)

where the exponential of an operator (here â1(t)) is defined by the Taylor series
expansion. This final answer seems almost obvious. We said that a1(t) at time t is
the classical random variable that results from measurement of â1(t) at time t. It
should follow that

〈ejva1(t)〉 = 〈ejvâ1(t)〉. (8)

Nevertheless, you should bear in mind that the averaging on the left-hand side of
this equation is a classical probability average, see (4), whereas the averaging on the
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right-hand side of this equation is a quantum average, see (7). We’ll see more of this
equivalence between the statistics of classical random variables and quantum operator
measurements when we treat the quantum theory of photodetection.

We now introduce the Wigner characteristic function for â, which is defined by

χW (ζ∗
∗

, ζ) ≡ 〈e−ζ â+ζâ†〉, (9)

for ζ a complex number whose real and imaginary parts are ζ1 and ζ2, respectively.
From the second equality in Eq. (3) and rewriting Eq. (9) as

χ 2jIm[ζ∗â]
W (ζ∗, ζ) = 〈e− 〉, (10)

we can show that
Ma1(t)(jv) = χW (ζ∗, ζ))|ζ=jvejωt/2. (11)

With a little more work, this formula will give us the quadrature-measurement statis-
tics when the oscillator is in a number state. That work, however, involves a digression
into operator algebra.

If a and b are numbers, then ea+b = eaeb = ebea. If A and B are square matrices,
then the matrix exponentials eA+B, eA, and eB are defined by their respective Taylor
series, i.e.,

∞

eC ≡
∑ Cn

n=0

, for C = (A+B), A,B. (12)
n!

If A and B commute, then you can easily verify that eA+B = eAeB = eBeA, but if
they do not commute, then these equalities do not hold. Because our Hilbert space
operators for the quantum harmonic oscillator are, in essence, infinite-dimensional
square matrices—as explicitly represented by their number-ket matrix elements—we

ˆ ˆ ˆ ˆ ˆ ˆ
know that eA+B, eAeB, and eBeA ˆ ˆare three different operators when [A,B] 6= 0.
However, a special case of the Baker-Campbell-Hausdorff theorem, which you will

ˆ ˆuse on Problem Set 5, is very helpful in this regard:2 It states that if A and B are
non-commuting operators that commute with their commutator, i.e., they satisfy[

ˆ ˆ ˆ ˆA, [A,B]
] [

ˆ ˆ= B, [A,B]
]

= 0, (13)

then
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

eA+B = eAeBe−[A,B]/2 = eBeAe[A,B]/2. (14)

Let’s apply the preceding theorem to the Wigner characteristic function, by iden-
ˆ − ∗ ˆtifying A = ζ â and B = ζâ†. We then get

ˆ ˆ[A,B] = −|ζ|2[a,ˆ â†] = −|ζ|2, (15)

2For more information, see W.H. Louisell, Quantum Statistical Properties of Radiation (McGraw-
Hill, New York, 1973) Sect. 3.1, or M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge, 2000) Sect. 7.4.2.
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so that the premise of the theorem is satisfied, whence

χW (ζ∗, ζ) ≡ 〈e−ζ∗â+ζâ†〉 = χA(ζ∗, ζ)e|ζ|
2/2 = χN(ζ∗, ζ)e−|ζ|

2/2. (16)

Here, χA(ζ∗, ζ) and χN(ζ∗, ζ) are the anti-normally ordered and normally-ordered
quantum characteristic functions,

∗ ≡ 〈 −ζ∗â ζâ†〉 † ∗
χA(ζ , ζ) e e and χN(ζ∗, ζ) ≡ 〈eζâ e−ζ â〉, (17)

respectively.3

Now we are ready to confront the quadrature-measurement statistics of the num-
ber state |n〉, where, for simplicity, we will will start by assuming t = 0 so that â1(0)
becomes â1. We have that

2

Ma1(jv) = χW (ζ∗, ζ))|ζ=jv/2 = [χN(ζ∗, ζ)e−|ζ| /2]|ζ=jv/2 (18)

〈 | ζâ† −ζ∗ 2

= [ n e e â|n〉e−|ζ| /2]|ζ=jv/2. (19)

Expanding the exponentials in their Taylor series, we can use the number-ket repre-
sentations of the annihilation and creation operators, and the orthonormality of the
number kets to show that

∞ m

Ma1( v) =

[(
m

∑ ζ
j

=0
m!
〈n|â†m

)(
∞∑
k=0

(−ζ∗)k

k!
âk|n〉

)
e−|ζ|

2/2

]
ζ=jv/2

(20)

=

(
n∑

m=0

(jv/2)m

m!

√
n! ∑n

n
(n−m)!

〈 −m|

)(
(jv/2)k

k=0
k!

√
n!

(n− k)!
|n− k〉

)
e−v

2/8 (21)

=

(
n∑

m=0

n! (−v2/4)m

m!(n−m)!

)
e−v

2/8 = L −v2(v2/4)e /8
n , (22)

m!

where
n

!
Ln(z) ≡

m

∑
=0

−1)m
n

(
m!(n−m)!

zm

m!
, (23)

3An operator that is a polynomial in â and â† is said to be in anti-normal order when, in each of
its terms, all of the annihilation operators stand to the left of all the creation operators, e.g., â2â†

is anti-normally ordered, but ââ†â is not. Similarly, an operator that is a polynomial in â and â† is
normally ordered when, in each of its terms, all of the creation operators stand to the left of all the
annihilation operators. Because the operator exponentials appearing inside the averaging brackets in
χA and χN are defined by their power series, it is easily seen that these characteristics functions are
averages of anti-normally ordered and normally-ordered operators, respectively. Operator ordering
is very important in quantum optics, and some of its features will be explored on Problem Set 5.
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is the nth Laguerre polynomial. Invoking the inverse transform that relates Ma1(jv)
to pa1(α1) we find that

v
pa1(α1 =

∫ ∞ d
)

−∞

2

Ln(v2/4)e−v /8e−jvα1 =
2π

√
2

π

e−2α
2
1

[Hn(
√

2nn!
2α1)]

2, (24)

where

Hn(z) ≡ (−1)nez
2 dne−z

2

, (25)
dzn

is the nth Hermite polynomial. Now, because â(t) = aeˆ −jωt, you can easily verify
that

χW (ζ∗, ζ)| 2 v2/8
ζ=jvejωt/2 = Ln(v /4)e− , for all t, (26)

which implies that

pa1(t)(α1) =

√
2

π

e−2α
2
1

[Hn(
√

2nn!
2α1)]

2, for all t. (27)

We can now provide the promised more explicit description of the phase space
pictures that we have drawn—on Slides 4 and 5—for the coherent state, number
state, and squeezed state cases. The shaded regions can be regarded as the high-
probability density regions for these measurements. For coherent states and squeezed
states the quadrature-measurements pdfs are Gaussians. Hence, their high probability
regions are circles (for coherent states) or ellipses (for squeezed states) whose centers
are at 〈â〉. Equation (27) shows that the â1(t) statistics for the number state are
time independent. Because â1(t) = Re(aeˆ −jωt), this tells us that our phase space
plot on Slide 4 is correct, in that it is circularly symmetric. Moreover, as we can see
from the typical example shown on Slide 9, the pdf for the number state’s quadrature
measurement has oscillations, but peaks away from α1 = 0. Thus the donut shaped
phase-space plot on Slide 4 is appropriate for capturing its highest probability region.

The Wigner Distribution and Non-Classicality

The measurement statistics of â1(t), for all t, follow from knowledge of the Wigner
characteristic function χW (ζ∗, ζ) ≡ 〈e−ζ∗â+ζâ†〉. You should verify that the measure-
ment statistics of â2(t), for all t, also follow from knowledge of the Wigner character-
istic function. So, it would seem that there is information about both quadratures
in this characteristic function. Note that χW is a function of two real variables,
ζ1 and ζ2, the real and imaginary parts of ζ, but the classical characteristic func-
tion for a quadrature measurement—and likewise its associated probability density
function—only depends on one real variable. The classical characteristic function for
the quadrature measurement and its associated pdf are a Fourier transform pair. It
is reasonable, then, to inquire about what information might be had if we investi-
gated the 2-D Fourier partner of χW . In particular, this partner might tell us how
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to get simultaneous information about both quadratures by some yet to be described
measurement technique.

The 2-D Fourier partner of χW is the Wigner distribution, and it is defined as
follows,

ζ
W (α∗, ) ≡

∫
d2

α
∗

χW (ζ∗, ζ)eζ α−ζα∗ , (28)
π2

where ∫
d2ζ

π2
≡
∫ ∞
−∞

dζ1
π

∫ ∞
−∞

dζ2
, (29)

π

and α is complex valued with real and imaginary parts α1 and α2, respectively. Be-
cause ζ∗α − ζα∗ = 2jζ1α2 − 2jζ2α1, (28) is, in essence, a Fourier transform relation.
The inverse relation corresponding to this result is

χW (ζ∗
∗

, ζ) =

∫
d2αW (α∗, α)e−ζ α+ζα∗ , (30)

In classical probability theory, the inverse transform of a characteristic function
is a probability density function. So, were the Wigner characteristic function to be
the joint characteristic function for two quantum measurements—because, after all,
it is a function of two real variables—its inverse transform, W (α∗, α) would be a
joint probability density function for two real-valued random variables. Evaluating
Eq. (30) at ζ = 0 gives

d2αW (α∗, α) = 1, (31)

because χ

∫
W (0, 0) = 1, by definition. This is one of the two conditions that W (α∗, α)

must satisfy in order for it to be a 2-D probability density function. The following
pair of examples will reveal that the other condition, W (α∗, α) ≥ 0, need not be
satisfied.
Example 1: the coherent state
When the oscillator is in the coherent state |β〉, we have that

χ (ζ∗, ζ) = 〈β|eζâ†e−ζ∗â 2

W | ∗ ∗ 2

β〉e−|ζ| /2 = eζβ −ζ βe−|ζ| /2, (32)

which, in turn, yields,
e−2|α−β|

2

W (α∗, α) = . (33)
π/2

This last result says that W (α∗, α) is the joint probability density function for statis-
tically independent, Gaussian random variables α1 and α2, whose mean values are β1
and β2, and whose variances are both 1/4. We have already stated that the coherent
states represent the classical behavior of the oscillator, through the correspondence
principle, so it should not be too surprising that their Wigner distribution functions
behave like classical probability densities.
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Example 2: the photon number state
When the oscillator’s state is the number ket |n〉, the calculation we did for the
number state’s quadrature-measurement statistics gives us that

ζ
W (α∗, ) =

∫
d2

α | ∗
L ζ α
n(| |2)e−|ζ 2/2eζ

∗α−ζ . (34)
π2

Converting the 2-D integral to polar coordinates, using ζ = rejφ and α = |α|ejθ,
and exploiting ζ∗α − ζα∗ = −2jr|α| sin(φ − θ), we can perform the azimuthal-angle
integration and obtain

2
W (α∗, α) =

π

∫ ∞
0

dr rLn(r2)e−r
2/2J0(2r|α|) = (−1)n

2 2

Ln(4
π

|α|2)e−2|α| , (35)

where J0 is the zeroth order Bessel function of the first kind. When n = 0, this
reduces to the zero-mean, coherent state result,

2
W (α∗, α) =

2

e−2|α| , (36)
π

because L0(z) = 1. However, when n = 1, we get

2
W (α∗, α) =

2

(4|α|2 − 1)e−2|α| , (37)
π

because L1(z) = (1 − z). This W (α∗, α) cannot be a classical probability density
function, because it is negative for |α| < 1/2.

Any state whose Wigner distribution is not a classical probability density function
is a non-classical state. This non-classicality condition is not sufficiently general,
however. In particular, as we shall see later this term, the squeezed states are non-
classical, even though their Wigner distribution functions are 2-D classical probability
densities.

Positive operator-Valued Measurement of â

We failed in our attempt to exploit the Wigner distribution function as a means for
“measuring” both quadratures of the oscillator at once, because number states with
n 6= 0 yield Wigner distributions that are negative for some α values. However, there
is a way to get information about â1 and â2 at the same time. To do so, of course,
we must go beyond the realm of the oscillator’s observables, because we know that
non-commuting observables—like â1 and â2—cannot be measured simultaneously.
The key to getting some information about both quadratures is the overcompleteness
property of the coherent states, as we will now show.

The Coherent State Positive Operator-Valued Measurement
We shall define the POVM for the annihilation operator â as follows. The outcome
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of this measurement is a complex number, α, with real and imaginary parts α1 and
α2, respectively. The probability density for getting the complex-valued outcome α—
equivalently, the joint probability density for getting the two real-valued outcomes α1

and α2—when the oscillator’s state is |ψ〉 is4

p(α) =
|〈α|ψ〉|2

, for α
π

∈ C. (38)

We can easily show that this definition is consistent with classical probability theory.
It is clear that p(α) so defined cannot be negative. To prove that it integrates to one,
we use the overcompleteness of the coherent states to write∫

d2 α
α p(α =

∫
d2

)
π
〈ψ|α〉〈α|ψ〉 = 〈ψ|

(∫
d2α ˆα
π
| 〉〈α|

)
|ψ〉 = 〈ψ|I|ψ〉 = 1. (39)

In our next lecture, we will reconcile this POVM with the notion that measurements
should be observables. For the rest of today, however, we shall evaluate some exam-
ples.

Example 1: the photon number state
When the oscillator’s state is the number ket |n〉, we have that

2

p(α)
|〈α|n

=
〉|

π
=
|α|2ne−|α|2

, for α
πn!

∈ C. (40)

Although this looks like a Poisson distribution, it is not. This is a probability density
function on α with n as a parameter. It is not a probability mass function for n
with α as a parameter. If we write α = |α|ejθ, we see that |α| and θ are statistically
independent, with the former having the pdf

2 2 2

p(|α =
|α| ne−|α||) , for 0

!
≤ |α| <∞, (41)

n

and the latter being uniformly distributed on [0, 2π]. Polar coordinate evaluation
then makes it easy to show that the â measurement has the following mean value,∫ ∫ ∞ 2|α|2(n+1)e

2

〈α〉 = d2
−|α|

ααp(α) = d
0

|α|
n!

∫ 2π

0

dθ
eiθ

= 0, (42)
2π

and that its real and imaginary parts have the following variances,∫ ∫ ∞ 2|α|2n+3e−|α|
2

〈∆α2
1〉 = d2αα2

1p(α) = d α
0

| |
n!

∫ 2π

0

dθ
cos2(θ)

2π
=
n+ 1

(43)
2∫ ∫ ∞ 2|α|2n+3e−|α|

2

〈∆α2〉 = d2αα2
2 2p(α) = d

0

|α|
2

n!

∫ π sin2(θ)
dθ

0 2π
=
n+ 1

. (44)
2

4We call this specification a measurement of â because the outcomes are eigenvalues of â and the
probability density for getting a particular outcome is proportional to the squared magnitude of the
projection of the system state onto the â eigenket that is associated with that outcome.
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State 〈α〉
|n〉 0
|β〉 β

|β;µ, ν〉 µ∗β − νβ∗

Table 3: Mean values of the â POVM for number states, coherent states, and squeezed
states.

State 〈∆α2
1〉 〈∆α2

2〉
|n〉 (n+ 1)/2 (n+ 1)/2
|β〉 1/2 1/2

|β;µ, ν〉 (|µ− ν|2 + 1)/4 (|µ+ ν|2 + 1)/4

Table 4: Variances of the real and imaginary parts of the â POVM for number states,
coherent states, and squeezed states.

Example 2: the coherent state
When the oscillator is in the coherent state |β〉, we have that

2

p( ) =
|〈α|β

α
〉|

π
=
e−|α−β|

2

, (45)
π

so that the real and imaginary parts of the â measurement are statistically indepen-
dent, Gaussian random variables with mean values β1 and β2, and identical variances
of 1/2.

Example 3: the squeezed state
When the oscillator is in the squeezed state |β;µ, ν〉 its â-measurement statistics could
be derived, from the knowledge we already have, but we will postpone that derivation
until later when an easier route becomes available. For now, we will just state that

( µ ν 2 + 1)〈α〉 = µ∗β − νβ∗, |〈∆α2
1

− |〉 =
4

, 〈∆α2
2〉 =

(|µ+ ν|2 + 1)
. (46)

4

The preceding mean value and variance results are summarized in Tables 3 and
4, respectively.

Some discussion is very certainly in order at this point. It is evident, from Ta-
ble 3, that for the states with non-zero 〈â〉 values, the POVM specified by (38) gives
simultaneous information about the mean values of both the â1 and â2 quadratures.
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Table 4 shows that the Heisenberg uncertainty principle for the quadratures is not
being violated by this â measurement. In particular, for number states, coherent
states, and squeezed states we have that

〈∆α2
1〉〈∆α2

2〉 ≥ 1/4, (47)

where the number state and coherent state results are self-evident, and the squeezed-
state result follows from

|µ− ν|2|µ+ ν|2 = |µ2 − ν2|2 ≥ (|µ|2 − |ν|2)2 = 1, (48)

and
|µ− ν|2 + |µ+ ν|2 = 2|µ|2 + 2|ν|2 = 2 + 4|ν|2 ≥ 2. (49)

Comparing the variances shown in Table 4 for the â measurement with our pre-
vious variance results for the â1 and â2 measurements from Table 2 shows that each
of the former variances exceeds its corresponding latter result by an additive term of
1/4. Thus, for a coherent state we have 〈∆â2k〉 = 1/4 and 〈∆α2

k〉 = 1/2, for k = 1, 2.
Learning the physical origin of this extra noise will be quite important to us, but that
lesson must wait until the next lecture.

The Road Ahead

We are almost done with our basic treatment of the quantum harmonic oscillator.
In the next lecture we shall reconcile the â-POVM with the notion of observables,
and, in doing so, we shall identify the physical origin of the extra noise term of 1/4
in Table 4. We will then use our knowledge of the quantum harmonic oscillator to
begin our study of single-mode photodetection.
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