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Chapter 3

Probability Review

The quantitative treatment of our generic photodetector model will require
the mathematics of probability and random processes. Although the reader is
assumed to have prior acquaintance with the former, it is nevertheless worth-
while to furnish a high-level review, both to refresh memories and to establish
notation.

3.1 Probability Space

Probability is a mathematical theory for modeling and analyzing real-world
situations, often called experiments, which exhibit the following attributes.

• The outcome of a particular trial of the experiment appears to be ran-
dom.1

• In a long sequence of independent, macroscopically identical trials of the
experiment, the outcomes exhibit statistical regularity.

• Statements about the average behavior of the experimental outcomes are
useful.

To make these abstractions more explicit, consider the ubiquitous introductory
example of coin flipping. On a particular coin flip, the outcome—either heads
(H) or tails (T )—cannot be predicted with certainty. However, in a long

1We use the phrase appears to be random to emphasize that the indeterminacy need
not be fundamental, i.e., that it may arise from our inability—or unwillingness—to specify
microscopic initial conditions for the experiment with sufficient detail to determine the
outcome precisely.
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38 CHAPTER 3. PROBABILITY REVIEW

sequence of N independent, macroscopically identical coin flips, the relative
frequency of getting heads, i.e., the fraction of flips which come up heads,

N(H)
fN(H) ≡ , (3.1)

N

where N(H) is the number of times H occurs, stabilizes to a constant value
as N →∞. Finally, based on this relative-frequency behavior, we are willing
to accept statements of the form, “For a fair coin, the probability of getting
|fN(H)− 1 | ≤ 0.1 exceeds 99% when N ≥ 250.”, where we have injected our

2

notion that fN (H) should stabilize at something called a probability, and that
this probability should be 1 for a fair coin.

2

The coin-flip example suggests that probability theory should be developed
as an empirical science. It is much better, however, to develop probability
theory axiomatically, and then show that its consequences are in accord with
empirical relative-frequency behavior. The basic unit in the probabilistic treat-
ment of a random experiment is its probability space, P = {Ω, Pr(·)}, which
consists of a sample space, Ω, and a probability measure, Pr(·).2 The sample
space Ω is the set of all elementary outcomes, or sample points {ω}, of the
experiment. In order that these {ω} be elementary outcomes, they must be
mutually exclusive—if ω1 ∈ Ω occurred when the experiment was performed,
then ω2 ∈ Ω cannot also have occurred on that trial, for all ω2 6= ω1. In order
that these {ω} be elementary outcomes, they must also be finest grained—if
ω1 ∈ Ω is known to have occurred when the experiment was performed, no
deeper level of information about the experiment’s outcome is of interest. Fi-
nally, in order that the sample space Ω = {ω} comprise all the elementary
outcomes of the experiment, the {ω} must be collectively exhaustive—when
the experiment is performed, the resulting outcome is always a member of the
sample space.

In terms of a simple experiment in which a coin is flipped twice, the natural
choice for the sample space is

Ω = {HH, HT, TH, TT}, (3.2)

where HT denotes heads occurred on the first flip and tails on the second flip,
etc. Ignoring strange effects, like a coin’s landing stably on its side, it is clear
that these sample points are mutually exclusive and collectively exhaustive.
Whether or not they are finest grained is a little more subjective—one might

2Purists will know that a probability space must also include a field of events, i.e., a
collection, F , of subsets of Ω whose probabilities can be meaningfully assigned by Pr(·). We
shall not require that level of rigor in our development.



3.1. PROBABILITY SPACE 39

be interested in the orientation of a fixed reference axis on the coin relative
to local magnetic north, in which case the sample space would have to be
enlarged. Usually, trivialities such as the preceding example can be disposed
of easily. There are cases, however, in which defining the sample space should
be done with care to ensure that all the effects of interest are included.

Now let us turn to the probability measure component of P. A probability
measure, Pr(·), assigns probabilities to subsets, called events, of the sample
space Ω. If A ⊆ Ω is an event,3 we say that A has occurred on a trial of the
experiment whenever the ω that has occurred on that trial is a member of A.
The probability that A will occur when the experiment is performed is the
number Pr(A). Because we want Pr(A) to represent the limit approached by
the relative frequency of A in a long sequence of independent trials of the real-
world version of the experiment being modeled probabilistically, we impose
the following constraints on the probability measure.

• Probabilities are proper fractions, i.e.,

0 ≤ Pr(A) ≤ 1, for all A ⊆ Ω. (3.3)

• The probability that something happens when the experiment is per-
formed is unity, i.e.,

Pr(Ω) = 1. (3.4)

• If A and B are disjoint events, i.e., if they have no sample points in
common, then the probability of either A or B occurring equals the sum
of their probabilities, viz.

Pr(A ∪ B) = Pr(A) + Pr(B), if A ∩ B = ∅. (3.5)

These properties are obvious features of relative-frequency behavior. For ex-
ample, consider N trials of the coin-flip-twice experiment whose sample space
is given by Eq. 3.2. Let us define events A ≡ {HT} and B ≡ {TH}, and use
N(·) to denote the number of times a particular event occurs in the sequence
of outcomes. It is then apparent that relative frequencies, fN(·) ≡ N(·)/N ,
obey

0 ≤ fN(A) ≤ 1, 0 ≤ fN (B) ≤ 1, (3.6)

3For curious non-purists, here is where a set of events, F , enters probability theory—
many probability measures cannot meaningfully assign probabilities to all subsets of Ω.
The problem arises because of uncountable infinities, and will not be cited further in what
follows—we shall allow all subsets of the sample space as events.
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fN(Ω) = 1, (3.7)

and
fN(A ∪ B) = fN ({HT, TH}) = fN(A) + fN(B), (3.8)

where the last equality can be justified by Venn diagrams. To complete this
coin-flip-twice example, we note that the assignment

1
Pr(ω) = , for all ω ∈ Ω (3.9)

4

satisfies all the constraints specified for a probability measure, and is the ob-
vious model for two independent flips of a fair coin.

There is one final notion from the basic theory of probability spaces that
we shall need—conditional probability. The probability space, {Ω, Pr(·)}, is
an a priori description of the experiment. For an event A, Pr(A) measures
the likelihood that A will occur when the experiment is performed, given
our prior knowledge of the experimental configuration. If the experiment is
performed and we are told that event B has occurred, we have additional
information, and the likelihood—given this new data—that A has occurred
may differ dramatically from Pr(A). For example, if A∩B = ∅, i.e., if A and B
are disjoint, then B’s having occurred guarantees than A cannot have occurred,
even though A’s occurrence may be exceedingly likely a priori, e.g., Pr(A) =
0.9999. When we are given the additional information that B has occurred on
performance of the experiment, we must replace the a priori probability space,
{Ω, Pr(·)}, with the a posteriori, or conditional, probability space, {B, Pr( · |
B )}, in which B takes the role of sample space, and

Pr( )
Pr( · | B )

· ∩B≡ , (3.10)
Pr(B)

is the conditional probability measure.
The structure of a conditional probability space is fairly easy to under-

stand. When we know that B has occurred, all events A ⊆ Ω which have no
sample points in common with B cannot have occurred, therefore the sam-
ple points that comprise B form a mutually exclusive, collectively exhaustive,
finest grained description of all the possible outcomes, given the information
that we now have about the experiment’s outcome. The relative likelihood of
occurrence for the sample points in B should not be affected by our knowl-
edge that B has occurred. However, these elementary probabilities need to be
scaled—through division by Pr(B)—in order that the conditional probability
measure yield its version of the “something always happens” condition, namely

Pr( B | B ) = 1. (3.11)
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Closely related to conditional probability is the concept of statistical inde-
pendence. Events A and B in the probability space P = {Ω, Pr(·)} are said
to be statistically independent if

Pr( A | B ) = Pr(A), (3.12)

i.e., if the likelihood of A’s occurring is unaffected by the knowledge that B
has occurred. Via Bayes’ rule,

Pr( A )
P ( B | A ) =

| B) Pr(B
r , (3.13)

Pr(A)

which is a simple consequence of Eq. 3.10, we see that statistically independent
events A and B will also satisfy

Pr( B | A ) = Pr(B), (3.14)

as well as

Pr(A ∩ B) = Pr(A) Pr(B). (3.15)

Of course, if two events are not statistically independent, they must be sta-
tistically dependent—knowledge that B has occurred will then modify our as-
sessment of the likelihood that A has also occurred. Note that disjoint events,
of non-zero a priori probability, must be dependent.

3.2 Random Variables

Were this chapter to be the text for a first course in probability theory, con-
siderably more time would be spent with the basic probability space structure
that was established in the previous section.4 We, however, have the luxury
of assuming prior acquaintance probability theory. Thus, we shall immedi-
ately press on to random variables—numerically-valued random occurrences.
This material, especially basic results for first and second moments, will com-
prise the foundation for a great deal of what follows in the theory of optical
communications.

4The reader who wants to brush up on statistical dependence, for example, might consider
the coin-flip-twice experiment with A = {HT } and C = {HT, TH, HH}—try to understand
why Pr(A | C ) = 4

3
Pr(A) prevails for a fair coin.



42 CHAPTER 3. PROBABILITY REVIEW

Probability Density Functions

Suppose we have a probability space, {Ω, Pr(·)}, for some experiment, and sup-
pose that x(·) is a deterministic function that maps sample points, ω ∈ Ω, into
real numbers, −∞ < x(ω) < ∞. We then say that x(·) is a random variable,

because our uncertainty as to which sample point in Ω will occur—as quan-
tified by the probability measure Pr(·)—implies, in general, a corresponding
uncertainty in the value of the number x(ω). We have many places in which
random variables arise in our generic semiclassical photodetector model, e.g.,
the light and dark event times, {τn} and {τ ′

n}, and the light and dark event
gains, {gn} and {g′

n}, etc. Our principal task in this subsection is to under-
stand how to specify the statistics—the probability measure—for a random
variable.

If x is a random variable, there is no loss of generality in treating its
possible values—its sample values—as the sample points in the probability
space. We can then write Ω = R1 ≡ {X : −∞ < X < ∞} for the sample
space associated with x, and the events associated with x are thus subsets of
the real line, e.g., A = {X : 2 ≤ |X| < 4 }, etc. The probability measure for
x can then be specified as a probability density function, px(X), such that

Pr(A) ≡ Pr(x ∈ A) =
∫

px(X) dX, for all A
X∈A

⊆ Ω. (3.16)

Because Eq. 3.16 must represent a properly-behaved probability measure, it
must obey the constraints laid out in Eqs. 3.3–3.5. The linear, additive nature
of integration ensures that Eq. 3.16 satisfies Eq. 3.5. In order that Eq. 3.4
hold, we require that px(X) satisfy

∫ ∞

px(X) dX = 1; (3.17)
−∞

in order that Eq. 3.3 be satisfied we also need

px(X) ≥ 0, for all X. (3.18)

Basically, any non-negative function of a single parameter that integrates to
one over the real line can be used as a probability density function, i.e., it
generates a meaningful probability measure via Eq. 3.16.

We now introduce two probability density functions which we will en-
counter frequently in our study of optical communications.

Gaussian random variable The probability density for a Gaussian random
variable x is

1
px(X) = √

2(X

e−
−m)

2πσ2
2σ2 , (3.19)
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where m is a real-valued constant, and σ2 is a non-negative constant.

Poisson random variable The probability density for a Poisson random
variable x is

∞ n

px X) =
n

∑ m
(

=0

e−mδ(X n
n!

− ), (3.20)

where m is a non-negative constant, and δ(·) is the unit impulse function.

The Gaussian random variable, whose probability density Eq. 3.19 has been
sketched in Fig. 3.1, is an example of a continuous random variable, in that
its px(X) has no singularities. Thus, for an arbitrary sample value X0, we find
that

X0

Pr(x = X0) = lim
∫

px(X) dX = 0, (3.21)
ǫ→0 X0−ǫ

i.e., there is zero probability that x equals any particular X0. However, because
px(X) is non-zero for a continuum of X values, Eq. 3.16 does assign positive
probabilities to events which are intervals of non-zero width on the real line.
Indeed, if px(X) is continuous at X = X0, we find—from Eq. 3.16 and the
mean value theorem—that

Pr( X0 − ǫ < x ≤ X0 ) ≈ px(X0), for ǫ sufficiently small, (3.22)
ǫ

thus justifying our terming px(X) a probability density function.
The Poisson random variable is an example of a discrete random variable,

in that its px(X) consists of a collection of impulses, which assign non-zero
occurrence probabilities to a discrete set of sample values. We shall do general
random-variable analyses by means of probability density functions. However,
when we are specifically dealing with a discrete random variable, it will be more
convenient for us to use its probability mass function, which gives the non-zero
occurrence probabilities for the various sample values, i.e., the areas of the
impulses in the probability density function. In particular, the Poisson random
variable’s probability mass function, which has been sketched in Fig. 3.2, is

mn

Px(n) ≡ Pr(x = n) = e−m, for n = 0, 1, 2, . . . ; (3.23)
n!

for Ω ≡ {n : n = 0, 1, 2, . . .}; this mass function constitutes a proper proba-
bility measure from which we can calculate event probabilities via

Pr(x ∈ A) =
n

∑

Px(n). (3.24)
∈A
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Figure 3.1: Gaussian probability density function
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We shall encounter additional random-variable probability densities as we
proceed. The Gaussian and the Poisson cases are of overwhelming importance,
however, because they have a variety of useful mathematical properties, to be
developed below, and because they are good models for a variety of real-world
random phenomena. Indeed, the Gaussian variable will be used to model
thermal noise, and the Poisson variable will be used to quantify light and dark
event times, etc.

Expectation Values

Knowledge of a random variable’s probability density function provides com-
plete statistical information about that variable—in principle, we can use the
density to calculate Pr(x ∈ A) for any event A. Often, however, we focus our
attention on simpler ensemble averages, or expectation values, of the random
variable. Specifically, if x is a random variable with probability density px(X),
and f(·) is a deterministic function, we say that

∞

E[f(x)] ≡
∫

f(X)px(X) dX (3.25)
−∞

is the ensemble average of f(x).5

Equation 3.25, which is known as the fundamental theorem of expecta-
tion, has a simple interpretation. Because x is a random variable, f(x)—a
deterministic function of a random variable—is also a random variable, i.e.,
our uncertainty as to which sample value of x will occur translates into an
uncertainty as to which sample value of f(x) will occur. Thus, the integral
on the right in Eq. 3.25 is summing, over all X, the sample value, f(X), that
f(x) takes on when x = X occurs, times its incremental occurrence probability
Pr( X − dX < x ≤ X ) = px(X) dX. Of particular interest to us are a variety
of special ensemble averages—f(·) choices—described below.

mean value The mean value of the random variable x, denoted mx or x̄, is

mx =
∫ ∞

Xpx(X) dX. (3.26)
−∞

It represents the deterministic part of the random variable x, in that it
is not random and

∆x ≡ x− x̄ (3.27)

5The terms ensemble average, mean value, expectation value, and probability average
are interchangeable.
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is, via the linearity of expectation,6 a zero-mean random variable satis-
fying

x = x̄ + ∆x, (3.28)

by construction. We call ∆x the noise part of x.

mean square It is easy to have a non-zero random variable whose mean value
is zero—this will be the case for any px(X) that is an even function of
X. The mean-square value of x,

∞

x2 ≡
∫

X2px(X) dX, (3.29)
−∞

is a useful measure of the strength of the random variable x, regardless
of the symmetry of its probability density function. Because densities
are non-negative, we see that x2 = 0 implies that x = 0 with probability
one.

variance The variance of a random variable x, denoted σ2
x or var(x), is its

mean-square noise strength, namely

σ2 2
x ≡ E(∆x ) = E[(x− x̄)2]

=
∫ ∞

(X − x̄)2px(X) dX. (3.30)
−∞

By squaring out the integrand in Eq. 3.30 and using the linearity of
integration, we can show that

σ2
x = x2 − x̄2. (3.31)

Via the remarks made for mean squares, we see that x = x̄ prevails with
probability one if var(x) = 0, i.e., random variables with zero variance
are not really random.

characteristic function Knowing the mean and variance of a random vari-
able x is very useful information, but it does not determine the proba-
bility density function. The characteristic function of x,

Mx(jv) ≡ E(ejvx) =
∫ ∞

ejvXpx(X) dX, (3.32)
−∞

6Three features of Eq. 3.25 recur endlessly—the average of the sum of random variables is
the sum of their averages; the average of a constant times a random variable is the constant
times the average of the random variable; and the average of a constant is that constant.
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does provide complete information about the density—Mx(jv) is basi-
cally the Fourier transform of p 7

x(X), and Fourier transform pairs form
a one-to-one correspondence, viz.

1
px(X) =

∞

Mx(jv)e−jvX dv. (3.33)
2π

∫

−∞

The well known properties of Fourier transformation thus confer special
properties on the characteristic function. Most notable of these is the
moment relationship

n

E(xn) =

(

∂
Mx(jv)

∂(jv)n

)∣
∣
∣
∣ . (3.34)
jv=j0

As an illustration of the utility of the mean a

∣

nd variance of a random
variable x, let us exploit their respective interpretations as the deterministic
part and mean-square noise strength of x by defining a signal-to-noise ratio,

SNR, according to
m2

SNR ≡ x , (3.35)
σ2

x

i.e., the SNR is the ratio of the squared signal strength—the squared mean of
x—to the mean-squared noise strength.8 With this definition, the well known
Chebyschev inequality,

σ2

Pr( |x− x̄| ≥ ǫ ) ≤ x , (3.36)
ǫ2

can be rewritten in the form

Pr

(

|x− x̄|
|x̄| ≥ δ

)

≤ 1
, for x̄ =

δ2SNR
6 0. (3.37)

Thus, random variables with high SNRs will be close to their mean values
with high probability, and single samples of such variables will then yield
high-quality measurements of their signal components.

We have assembled in Table 3.1 the means, variances, and characteristic
functions of the Gaussian and Poisson variables whose densities were presented
earlier. These results can be derived without great difficulty, a task left as

7We shall also make use of the bilateral Laplace transform of px(X), Mx(s) ≡ E(esx), in
some future calculations. This quantity is usually called the moment generating function of
x.

8SNR evaluations will abound in our future efforts. It is important to note that what
constitutes signal, and what constitutes noise, are generally context dependent. It is also
worth mentioning that we are taking the theorist’s squared-strength ratios, rather than the
experimentalist’s root-mean-square (rms) ratios, for our SNR formulas.
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distribution mean variance characteristic function

Gaussian [Eq. 3.19] m σ2 exp
(

jvm− v2σ2

2

)

Poisson [Eq. 3.20] m m exp [m (ejv − 1)]

Table 3.1: Moments of the Gaussian and Poisson distributions

an exercise for the reader. We will close our review of the moments of a
single random variable x by quoting a probability bound for the Gaussian
distribution—whose derivation will be given in a later chapter—for comparison
with the Chebyschev inequality Eq. 3.37:

Pr

(

|x− x̄| ≥ δ

)

≤ e−δ2SNR/2, for x Gaussian distributed. (3.38)|x̄|

Here we see an exponential decrease with increasing SNR of the probability
that |x − x̄| exceeds a threshold; the Chebyschev inequality predicts a much
weaker algebraic decay with increasing SNR. The Chebyschev inequality is a
very general result, which only requires knowledge of the mean and variance
of the random variable for its evaluation. The cost of this generality is the
weakness of the resulting bound, i.e., when we use the probability density
of x we are apt to find a much smaller probability that |x − x̄| exceeds the
prescribed threshold than the upper limit set by the Chebyschev inequality.

Transformations

If x is a random variable and f(·) is a deterministic function, we know that
y ≡ f(x) is a random variable, and we know how to calculate its moments
given knowledge of the probability density of x. Sometimes, it is important
or convenient to use px(X) and the known transformation f(·) to obtain the
probability density of y. A simple example is the following. Suppose x is a
temperature Fahrenheit obtained from a sensor monitoring some fluctuating
chemical reaction. We might well prefer to analyze this experiment in Celsius
temperature units, i.e., by dealing with

5
y = (x

9
− 32). (3.39)
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There are a variety of techniques for deriving the density, py(Y ), for a deter-
ministic transformation, y = f(x), of a random variable, x, of known density,
px(X). The most general of these various procedures, and the only one that
we shall discuss at present, is the method of events.

The method of events for computing py(Y ) proceeds as follows. The proba-
bility density function can always be found as the derivative of the probability
distribution function,

dFy(Y )
py(Y ) = , (3.40)

dY

where
Fy(Y ) ≡ Pr(y ≤ Y ). (3.41)

The distribution function, in turn, can be computed, via the known transfor-
mation and the given px(X), from the following development

Pr(y ≤ Y ) = Pr(f(x) ≤ Y ) =
∫

px(X) dX. (3.42)
{X:f(X)≤Y }

All the hard work then revolves around performing the necessary setting of
limits, integration, and differentiation.

For the transformation y = ax + b, where a > 0 and b are constants, the
method of events yields

Fy(Y ) =
∫

px(X) dX
{X:aX+b≤Y }
∫ (Y −b)/a

= px(X) dX, (3.43)
−∞

which may be differentiated via the Leibniz rule

d

dY

∫ u(Y )

l(Y )
g(X, Y ) dX = g(u(Y ), Y )

du(Y ) dl(Y )
g

dY
− (l(Y ), Y ) +

dY
∫ u(Y ) ∂g(X, Y )

l(Y )
dX, (3.44)

∂Y

with the result
1

py(Y ) =
a
px

(

Y − b
)

a

)

. (3.45

For a < 0 a similar calculation produces the above result with a replaced by
|a| in the coefficient multiplying the px term.

We could complete the ax + b transformation example by substituting in
the a and b values associated with the Fahrenheit-to-Celsius conversion. It is
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much more interesting to leave a and b arbitrary, and see that px(X) Gaussian
with mean mx and variance σ2

x results in

1
py(Y ) = √

Y
exp

2πa2σ2
x





−
[

− (amx + b)


2

2a2σ2
x

]




, (3.46)

which shows that y is also Gaussian, with



my = amx + b, (3.47)

and

σ2
y = a2σ2

x. (3.48)

Equations 3.47 and 3.48 do not depend on the density function of x being
Gaussian; they are immediate consequences of the ax + b transformation and
the linearity of expectation. Direct derivations of them, namely

my = E(y) = E(ax + b) = aE(x) + b, (3.49)

and

σ2
y = E(∆y2)

= E{[(ax + b)− (ax̄ + b)]2}
= E[(a∆x)2] = a2σ2

x, (3.50)

are of interest for future use. Note, from these derivations, that this linear—
strictly-speaking affine—transformation has the following properties.

• The mean output of a deterministic linear transformation driven by a
random variable is the mean input passed through the transformation.

• The noise part of the output of a deterministic linear transformation
driven by a random variable is the noise part of the input passed through
the transformation.

One final comment on transformations of a single random variable. The
fact that y = ax+ b is Gaussian, for all constants a and b, when x is Gaussian
is no accident. In fact, if y = ax+ b is Gaussian for all choice of the constants,
then x must be Gaussian. This can be shown via characteristic functions, and
forms the basis for the important case of jointly Gaussian random variables to
be seen below.
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3.3 Two Joint Random Variables

A single random variable is insufficient for the probabilistic analyses we shall
pursue—the photodetection systems we want to model produce collections of
joint random variables, i.e., a multiplicity of numerically valued outcomes. We
begin, in this section, with two joint random variables—the 2-D case. In the
next section we generalize to N -D case, namely, N joint random variables. In
the chapter that follows, we shall see how the latter case extends naturally
into the study of random waveforms.

2-D Joint Probability Densities

Suppose we have a probability space, P = {Ω, Pr(·)}, and two deterministic
functions, x(·) and y(·), which map sample points ω ∈ Ω into real numbers,
−∞ < x(ω) <∞ and −∞ < y(ω) < ∞. This is the natural two-dimensional
extension of the case addressed in the last section. We say that x and y are joint
random variables on P. They are random variables because our uncertainty
as to which ω will occur when the experiment is performed translates into
corresponding uncertainties in the values of x(ω) and y(ω). They are joint

random variables because they are defined on the same probability space, thus
it is meaningful—and, for completeness, it is necessary—to address the joint
probability that x falls into some particular interval and y falls into some other
specific interval on the same trial of the experiment. For these joint random
variables, we will briefly indicate how the key single random variable notions
of probability density functions, expectations, and transformations extend.
We shall also translate the basic probability space concepts of conditional
probability and statistical independence into joint random variable terms.

Without loss of generality, we can regard the sample space for two joint
random variables x and y as the X–Y plane, viz. Ω = R2 ≡ { (X, Y ) : −∞ <
X, Y < ∞}, and we can specify the probability measure for events A via a
joint probability density function px,y(X, Y ) and the relation

Pr(A) =
∫ ∫

dX dY px,y(X, Y ), for all A
(X,Y )∈A

⊆ Ω. (3.51)

Equation 3.51 is the 2-D version of Eq. 3.16. The fundamental probability
measure constraints, Eqs. 3.3–3.5, led to the restrictions embodied in Eqs. 3.17
and 3.18 on functions of a single variable, px(·), which can be probability
densities. These same probability measure constraints imply that 2-D joint
probability density functions must obey

∫ ∞

dX
−∞

∫ ∞

dY px,y(X, Y ) = 1, (3.52)
−∞
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and

px,y(X, Y ) ≥ 0, for all X, Y ; (3.53)

i.e., any deterministic non-negative function of two variables that integrates to
one over the X–Y plane is a valid px,y(X, Y ). Taking A = { (X, Y ) : X0− ǫ <
X ≤ X0, Y0 − ǫ < Y ≤ Y0 } with ǫ → 0 in Eq. 3.51 shows that px,y(X0, Y0) is
the joint probability per unit area of obtaining x = X0 and y = Y0 when the
experiment is performed.9

An immediate issue that arises in conjunction with two-dimensional joint
probability densities is their relationship with the one-dimensional, marginal,

densities encountered previously. Suppose that x and y are joint random
variables and that B is a region on the real line. Then, we can compute
Pr(x ∈ B) either directly—via Eq. 3.16 using the marginal density px(X)—or
indirectly—via Eq. 3.51 and the two-dimensional event

A ≡ { (X, Y ) : X ∈ B,−∞ < Y <∞}. (3.54)

In either case, we must arrive at the same number Pr(x ∈ B). Thus, since B
was arbitrary, it must be that

px(X) =
∫ ∞

px,y(X, Y ) dY for all X; (3.55)
−∞

interchanging the roles of x and y in this derivation shows that the marginal
density for y can be found from the x–y joint density by integrating out over
X from −∞ to ∞.

We have shown that marginal statistics can be found from joint statistics
by integrating out the unwanted variables—if we know the function px,y(X, Y )
we can, in principle, calculate the functions px(X) and py(Y ). The converse
is not generally true, i.e., knowing the functions px(X) and py(Y ) places con-
straints on the permissible joint distribution px,y(X, Y ), but does not deter-
mine the joint density.10 There is one case in which the marginal densities
determine the joint density; it is when the two variables are statistically inde-
pendent.

For x and y joint random variables, with joint density px,y(X, Y ), and
B ⊆ R1 a region on the real line, the a priori probability of having x ∈ B
occur is computed from the marginal density of x, as described above. If, upon
performance of the experiment, we observe that y = Y has occurred, then we

9Here, (X0, Y0) is assumed to be a point of continuity of px,y(X, Y ), cf. Eq. 3.22.
10One of the home problems for this chapter exhibits an infinite family of px,y functions

associated with a given pair of px and py functions.
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need to find the conditional probability, Pr( x ∈ B | y = Y ), to assess the
likelihood of x ∈ B. With the aid of Eq. 3.10 it can be shown that

Pr( x ∈ B | y = Y ) =
∫

px|y( X
X∈B

| Y ) dX, (3.56)

where
p ,

px|y( X Y ) ≡ x y(X, Y )| (3.57)
py(Y )

is the conditional probability density for x given y = Y has occurred. The
random variables x and y are said to be statistically independent if and only
if

Pr( x ∈ B | y = Y ) = Pr(x ∈ B), for all B and Y . (3.58)

Equations 3.16 and 3.57 then imply that x and y are statistically independent
if and only if

px|y( X | Y ) = px(X), for all X, Y , (3.59)

which is equivalent to the functional factorization of the joint density into the
product of its marginals, viz.

px,y(X, Y ) = px(X)py(Y ), for all X, Y . (3.60)

In doing calculations, it is a great convenience to deal with statistically inde-
pendent random variables. In doing communication theory analyses we are
often confronted with statistically dependent random variables, i.e., the ran-
dom variable that is received may be a noise-corrupted version of the random
variable that was sent.

We shall complete our brief examination of 2-D joint random variables
by augmenting our knowledge of expectations, transformations, and Gaussian
random variables—all topics that will be of use in succeeding chapters.

2-D Expectations

The fundamental theorem of expectation, Eq. 3.25, has the following extension
to two dimensions

∫ ∞ ∫ ∞

E[f(x, y)] = dX dY f(X, Y )px,y(X, Y ), (3.61)
−∞ −∞

for any deterministic function of two variables, f(·, ·). The relation between
joint and marginal densities guarantees that Eqs. 3.25 and 3.61 yield identical
results for the mean values, mean-square values, variances, and characteristic
functions of x and y, because they only involve marginal statistics. Our present
interest is in the following two expectations which involve joint statistics.
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covariance The covariance of x and y, denoted λxy or cov(x, y), is the average
of the product of their noise parts, i.e.,

λxy ≡ E(∆x∆y) = E(xy)− x̄ȳ, (3.62)

where the linearity of expectation has been used to obtain the second
equality, and ∆x ≡ x− x̄ as given earlier in our discussion of variance.

joint characteristic function The joint characteristic function of x and y,
denoted Mx,y(jvx, jvy), is the two-dimensional Fourier transform of the
joint density, i.e.,

Mx,y(jvx, jvy) ≡ E[exp(jvxx + jvyy)], (3.63)

cf. Eq. 3.32.

The covariance plays a key role in second-moment calculations involving
linear transformations of x and y, and it provides an imperfect but simple
measure of the statistical dependence between x and y. Suppose a, b, and c
are constants, and we construct a new random variable z from x and y via the
linear transformation

z = ax + by + c. (3.64)

Following the precepts established in deriving Eqs. 3.47 and 3.48, we have that

mz = E(ax + by + c) = E(ax) + E(by) + E(c) = amx + bmy + c, (3.65)

and

σ2
z = E(∆z2)

= E{[(ax + by + c)− (ax̄ + bȳ + c)]2}
= E[(a∆x + b∆y)2] = a2σ2

x + 2abλ 2
xy + b σ2

y . (3.66)

The last equality in Eq. 3.66 is obtained by squaring out inside the expectation
and using manipulations similar to those employed in Eq. 3.65—the average
of the sum is the sum of the averages, etc.

Because the variance is a second moment, the variance of a sum of random
variables is not usually the sum of their variances, as can be seen from the
above calculations with a = b = 1 and c = 0. If, however, the two random
variables are uncorrelated, i.e., their covariance is zero, then the variance of
their sum is the sum of their variances. It turns out that statistically inde-
pendent random variables are always uncorrelated, as the following argument
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shows:11

∞ ∞

E(∆x∆y) =
∫

dX
∫

dY (X − x̄)(Y
−∞ −∞

− ȳ)px,y(X, Y )

=
∫ ∞ ∞

dX
∫

dY (X − x̄)(Y − ȳ)px(X)py(Y )
−∞ −∞

= E(∆x)E(∆y) = 0, (3.67)

where the second equality used the statistical independence of x and y, and
the last equality used the zero-mean nature of the noise-parts of x and y. The
converse result is not true—there are uncorrelated random variables that are
statistically dependent.

The last paragraph addressed the minimum possible value of |λxy|; there
is also useful information to be mined from the maximum possible value of
|λxy|. For all a, b, and c, the random variable z generated by the transforma-
tion Eq. 3.64 must have a non-negative variance. A little differential calculus
applied to Eq. 3.66 then reveals that

|λxy| ≤ σxσy, (3.68)

with equality if and only if

y −my

σy
= sgn(λxy)

x−mx
, with probability one, (3.69)

σx

where sgn(·) is the signum function,

sgn(t) =

{

1, for t ≥ 0,
(3.70)−1, for t < 0.

In view of the form of the upper limit on |λxy|, Eq. 3.68, it is useful to introduce
the correlation coefficient, ρxy, according to12

λ y
xy ≡ x

ρ . (3.71)
σxσy

Uncorrelated random variables x and y have ρxy = 0. Random variables x
and y with |ρxy| = 1 are said to be completely correlated, because knowledge
of the value of one determines the value of the other through Eq. 3.69—two

11This proof can easily be extended to demonstrate that E[f(x)g(y)] = E[f(x)]E[g(y)] for
statistically independent x and y, where f(·) and g(·) are arbitrary deterministic functions.

12Really, ρxy should be the covariance coefficient; the term correlation coefficient is stan-
dard, however.
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completely correlated random variables are as dependent as a pair of joint
random variables can be.

Before passing on to transformations, a few comments about the joint
characteristic function merit inclusion. The lengthy discussion of covariance,
in conjunction with our earlier development of the utilities of mean values
and variances, argues eloquently for the use of first and second moments in
doing probabilistic studies. This is doubly true when linear transformations are
involved, for, as we have seen, the first and second moments of the transformed
variable can easily be found from the first and second moments of the input
variables and the transformation coefficients. Our enthusiasm for the low-order
moments {mx, my, σ

2
x, σ

2
y , λxy} must be tempered by the knowledge that they

do not, in general, provide the same information as the joint probability density
function px,y(X, Y ). The joint characteristic function, like its one-dimensional
cousin, does provide a complete statistical characterization—px,y(X, Y ) can be
found from Mx,y(jvx, jvy) via 2-D inverse Fourier transformation. Moreover,
the 2-D versions of the standard Fourier transform properties can be used to
prove the 2-D moment relation

m

E[xn m] =

(

∂n+

y Mx,y(jvx, jvy)

)∣
∣
∣

, (3.72)
∂(jvx)n∂(jvy)m

jvx=jvy=j0

which can be reduced to our earlier result for a single r

∣
∣

andom variable, Eq. 3.34,
by setting m = 0 and recognizing that Mx(jv) = Mx,y(jv, j0).

2-D Transformations

Let x and y be joint random variables, and let f(·, ·) and g(·, ·) be two deter-
ministic functions of two variables. Then z ≡ f(x, y) and u ≡ g(x, y) comprise
a 2-D to 2-D transformation of x and y into new joint random variables z and
u. If the joint density of z and u is sought, given knowledge of the transfor-
mation and the joint input-variable density px,y(X, Y ), we can again turn to
the method of events, now in 2-D form. We find the joint probability den-
sity function as the second mixed partial derivative of the joint distribution
function,

∂2Fz,u(Z, U)
pz,u(Z, U) = , (3.73)

∂Z∂U
where

Fz,u(Z, U) ≡ Pr(z ≤ Z, u ≤ U). (3.74)

The distribution function is found by means of

Pr(z ≤ Z, u ≤ U) = Pr(f(x, y) ≤ Z, g(x, y) ≤ U)
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=
∫ ∫

dX dY px,y(X, Y ), (3.75)
(X,Y )∈A

for A ≡ { (X, Y ) : f(X, Y ) ≤ Z, g(X, Y ) ≤ U }, (3.76)

and calculational elbow grease—the latter sometimes involves relentless appli-
cation of the Leibniz rule.

In the case of a linear transformation, there is a useful alternative proce-
dure. As a prelude to our treatment of 2-D Gaussian random variables, said
procedure is worth exploring. Suppose that z and u are obtained from x and
y via

z = ax + by + c, (3.77)

u = dx + ey + f, (3.78)

where a through f are constants. Here we can directly compute the joint
characteristic function of z and u:

Mz,u(jvz, jvu) = E[ej(avz+dvu)x+j(bvz+evu)y+j(cvz+fvu)] (3.79)

= Mx,y[j(avz + dvu), j(bvz + evu)]e
j(cvz+fvu). (3.80)

This form conveniently yields marginal statistics, because

Mz(jv) = Mz,u(jv, j0), (3.81)

etc. Let us take this approach to determine the probability density for z =
x+y, when x and y are statistically independent random variables with known
marginal densities px and py. Setting a = b = 1 and c = 0 in Mz,u(jv, j0), we
find that

Mz(jv) = Mx,y(jv, jv) = Mx(jv)My(jv), (3.82)

where the last equality makes use of statistical independence. The convolution
multiplication theorem of Fourier analysis now can be used to inverse transform
this characteristic function equation, with the following result

∞

pz(Z) =
∫

px(X)py(Z −X) dX = px ∗ py, (3.83)
−∞

where ∗ denotes convolution.
Two special applications of Eq. 3.82 are of particular note—when x and y

are statistically independent and Poisson distributed, and when x and y are
statistically independent and Gaussian distributed. In the Poisson situation,
Eq. 3.82 in conjunction with Table 3.1 prove that z = x + y will be Poisson
distributed; in the Gaussian case, these results imply that z will be Gaussian
distributed. The low-order moments needed to complete specification of pz(Z)
in either of these circumstances are given by limiting forms of our linear-
transformation formulas, Eqs. 3.65 and 3.66.
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2-D Gaussian Random Variables

Let x and y be joint random variables. They are said to be jointly Gaussian

if [

−σ2
y(X−mx)2−2λxy(X−mx)(Y −my)+σ2 2

xp x(Y −my)
e

px,y(X, Y ) =
2(σ2

xσ2
y−λ2

xy)

]

2π
√ (3.84)

σ2
xσ

2
y − λ2

xy

is their joint probability density function,13 where, as the notation suggests,
mx, my, σ2

x, σ2
y , and λxy are the means, variances, and covariance, respectively,

of x and y. This joint probability density has been sketched in Fig. 3.3; it is
a 2-D generalization of the bell-shaped curve, Fig. 3.1, of the 1-D Gaussian
density, Eq. 3.19. With some analytic geometry, it can be shown that equal-
height contours of the jointly Gaussian density are ellipses. With some Fourier
integration, it can be shown that the joint characteristic function associated
with Eq. 3.84 is (cf. Table 3.1 for the 1-D Gaussian case)

Mx,y(jvx, jvy) = exp

[

v2σ2 2
x

(vxmx + vymy)− x + 2vxvyλxy + vyσ
2
y

j )
2

]

. (3.85

These 2-D formulas embody a variety of important properties, as spelled
out below:

joint vs. marginal statistics If x and y are jointly Gaussian, then they are
also marginally Gaussian—this is an immediate consequence of Eq. 3.85
with vx or vy set equal to 0. The converse is not generally true—a pair
of marginally Gaussian random variables need not be jointly Gaussian.

conditional statistics If x and y are jointly Gaussian, then Eqs. 3.57,3.84,
3.19, plus the customary algebraic elbow grease yield




[

X−m −ρ σx
x

xp −
xy

e

px|y( X | Y ) =



σy
(Y −my)

]2

2σ2
x(1−ρ2

xy)







√ , (3.86)
2πσ2

x(1− ρ2
xy)

for the conditional density of x = X given y = Y has occurred. Compar-
ing Eqs 3.19 and 3.86 shows that x is still Gaussian distributed, given

13This density is well behaved so long as x and y are not completely correlated. For x
and y completely correlated, Eq. 3.84 is impulsive along the line dictated by Eq. 3.69, as it
should be.
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Figure 3.3: Jointly Gaussian probability density function; ρ = 0.75

y = Y , with conditional mean

σ
E( x | x

y = Y ) = mx + ρxy (Y ,
y
−my) (3.87)

σ

and conditional variance

var( x | y = Y ) = σ2
x(1− ρ2

xy). (3.88)

linear transformations If x and y are jointly Gaussian, and z is generated
from them via the linear transformation

z = ax + by + c, (3.89)

where a, b, and c are constants, then z is a 1-D Gaussian random variable,
with mean

mz = amx + bmy + c, (3.90)

and variance
σ2

z = a2σ2
x + 2abλ 2 2

xy + b σy . (3.91)

These moment equations are general consequences of the linearity of
the transformation, recall Eqs. 3.64–3.66. That pz will be Gaussian is
easily shown from Eq. 3.85 and the characteristic function approach to
linear-transformation calculations.
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Figure 3.4: Conditional density, px|y, and marginal density, px, when x and y
are jointly Gaussian; mx = 0, σx = σy, ρxy = 0.75, X = 1.2

We will soon generalize these properties to N -D Gaussian random variables,
and later we will see them again in the guise of Gaussian random processes.
There are several points worth noting now, so that we may re-emphasize them
in what follows. Many probability calculations involving jointly Gaussian ran-
dom variables are appreciably simpler than general-case results. If x and y
are known to be jointly Gaussian, then specification of their joint probability
density function can be completed by giving values for their first and second
moments; for arbitrary joint random variables, these low-order moments do
not determine the joint density. For jointly Gaussian x and y, we do not have
to integrate to find the marginal statistics, as is generally the case. If x and y
are jointly Gaussian, then they will be statistically independent if and only if
they are uncorrelated, as can be seen from comparing Eq. 3.19 and Eq. 3.86
with ρxy = 0, or from Fig. 3.4;14 arbitrary uncorrelated random variables need
not be statistically independent.

The linear transformation property deserves special attention. We defined
x and y to be jointly Gaussian if their joint probability density function had

14Figure 3.4 also illustrates how px|y collapses to a unit-area impulse at X = mx +
sgn(ρxy)σx

σ
(Y −my) when x and y become completely correlated, cf. Eq. 3.69.

y
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the form Eq. 3.84.15 From this definition we concluded that any linear trans-
formation of this jointly Gaussian pair yields a 1-D Gaussian random variable.
This closure under linear transformations is powerful enough to determine

the jointly Gaussian density, i.e., the only joint probability density for which
z = ax + by + c will be a 1-D Gaussian random variable regardless of the
choice of the constants a through c is Eq. 3.84.16 Indeed, we will use this
linear-closure approach, in the next section, for our definition of N jointly
Gaussian random variables.

One final comment, of a physical nature, regarding Gaussian random vari-
ables will serve as a useful cap to the present development. Gaussian statistics
are good models for random experiments in which a macroscopic observation
is comprised of a large number of more-or-less small, more-or-less independent,
microcopic contributions—thermal noise and high-density shot noise are two
examples of such circumstances. Mathematically, the preceding statement,
made rigorous, constitutes the Central Limit Theorem of basic probability
theory.

3.4 Random Vectors

The transition from two joint random variables to N joint random variables
is primarily one of notation—no new probabilistic concepts need to be in-
troduced.17 Consider a random experiment whose outcomes comprise N real
numbers—an ordered N -tuple—(x1, x2, . . . , xN). A probabilistic model for
this experiment will represent these values as N joint random variables in a
probability space, P, whose sample space is

Ω = RN ≡ { (X1, X2, . . . , XN) : −∞ < Xn <∞, 1 ≤ n ≤ N }, (3.92)

and whose probability measure, Pr(·), is given by the joint probability density
p 18

x1,x2,... ,xN
(X1, X2, . . . , XN). The probability that the N -tuple that occurs

will fall in A ⊆ RN is found by integrating the joint density over A. We won’t

15Equivalently, x and y are jointly Gaussian if their joint characteristic function obeys
Eq. 3.85.

16Note that the moments of z will depend on a through c, as given by Eqs. 3.65 and 3.66,
but the density of z must obey Eq. 3.19 if x and y are jointly Gaussian.

17However, unlike the material on one and two random variables, we shall neither assume
great prior familiarity with the N -D case, nor shall need to do many complicated N -D
calculations in the chapters that follow.

18Here, we have dispensed with the formality of initially defining N deterministic func-
tions, x1(ω), x2(ω), . . . , xN (ω), which map sample points ω ∈ Ω into real numbers for some
abstract P = {Ω, Pr(·)}.
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exhibit the equation, because it is notationally cumbersome. Instead, we shall
deal with general issues of N joint random variables in vector notation.

Vector Notation

The N joint random variables x1, x2, . . . , xN are equivalent to a random N -
vector,

x


x1

≡

 x


2
.







, (3.93) .
 .

xN




with probability density function19

px(X) ≡ px1,x2,... ,xN
(X1, X2, . . . , XN), (3.94)

where the dummy-variable N -vector X is

X


X1

X2
.



≡



 .
 .



XN


 . (3.95)


Thus, for A ⊆ RN , we have that

Pr(x ∈ A) =
∫

px(X)dX. (3.96)
X∈A

The dX appearing on the right in Eq. 3.96 is the N -D differential volume
element, i.e., the notation implies integration over a region in RN . Although
calculating numerical results from Eq. 3.96 may be quite tedious, developing
conceptual results from this formula is relatively easy. The forms of Eq. 3.16—
for a single random variable—and Eq. 3.96—for N joint random variables—
are so similar that we can immediately draw the following conclusions. Any
deterministic function, px(X) for X ∈ RN , that is non-negative and integrates
to one over RN can serve as a probability density for a random N -vector x.
At its points of continuity, px(X) is the probability per unit N -D volume that
x=X will occur.

Several vector versions of concepts we have seen earlier can be developed
by considering a random (N +M)-vector z, whose first N dimensions comprise

19In words, the probability density function for a random vector, x, is the joint probability
density function for its components, {x1, x2, . . . , xN}.
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a random N -vector x, and whose last M dimensions form a random M-vector
y. In partitioned notation, we can then write

z =



x

 −−−



y


 , (3.97)

and use

px,y(X,Y) ≡ pz(Z), (3.98)

where

Z =



X

 −−−




 , (3.99)

Y

for the joint probability density function of the vectors x and y. We now have,
via analogy with the 2-D theory, that the marginal statistics of the vector x

are found by integrating out the Y dependence of px,y, viz.

px(X) =
∫

px,y(X,Y)dY. (3.100)
Y∈RM

Similarly, we have that the conditional probability density for x, given y = Y

has occurred, is
p )

px| (X | Y) =
x,y(X,Y

y . (3.101)
py(Y)

The random vector x is said to be statistically independent of the random
vector y if and only its conditional density, from Eq. 3.101, is equal to its a
priori density, px(X), for all X and Y.20

Expectations

Suppose x is a random N -vector with probability density function px(X). If
f(X), for X ∈ RN , is a deterministic scalar function of an N -vector argument,
then f(x) is a random variable whose mean value can be found from

E[f(x)] =
∫

f(X)px(X)dX. (3.102)
X∈RN

20Note that x and y being statistically independent implies that xn and ym are statistically
independent for all 1 ≤ n ≤ N and 1 ≤ m ≤ M . It does not imply that xn and xn′ are
statistically independent for n 6= n′.
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If f(X) is an M-vector deterministic function of an N -vector argument,

f1(X)
f2(X)

f(X)



≡ 



 .



..



fM(X)




 , (3.103)

 

then f(x) is a random M-vector, whose expectation value—its mean vector—is
defined as follows

E[f(x)]


E[f1(x)]



≡ 
 E[f2(x)]

...



E[fM(x)]


 , (3.104)

where the components on the right in



Eq. 3.104 c



an be found from Eq. 3.102.
Finally, if F(X) is a deterministic (M × K)-matrix function of an N -vector
argument, then its expectation value—also a matrix—is found either by ensem-
ble averaging its column vectors using Eq. 3.104, or, equivalently, by ensemble
averaging each entry using Eq. 3.102.

Some of the benefits that accrue from the foregoing notational machinery
can be gleaned from a simple example, which compares the component and
vector/matrix approaches to calculating the first and second moments of a lin-
ear transformation. Let x1, x2, . . . , xN be a collection of joint random variables
with known first and second moments—means, variances, and covariances. Let
us consider the first and second moments of the random variables

ym ≡
n

∑N

amnxn + bm, for 1
=1

≤ m ≤M, (3.105)

where the {amn} and the {bm} are constants. Straightforward application of
the basic properties cited earlier for expectation gives us

∑N

mym
= amnmxn

+ bm, for 1
n=1

≤ m ≤M, (3.106)

and

λymy ′

m′
= E[∆ym∆ym ]

= E

[
∑N N

amn∆xn

∑

am′n′∆xn′

n=1 n′=1

]

[
∑N ∑N

= E amnam′n′∆xn∆xn′

n=1 n′=1

]
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N

=
∑ ∑N

amnam′n′λxnxn′
, for 1 ≤ m, m′ 3

=1 n′=1

≤M . ( .107)
n

The one novel calculational device encountered in the above development is
the use of different dummy summing indices in the second equality. This
device permits the product of two summations to be written as a double sum.
The latter form is amenable to the interchange of expectation and summation
in that the average of the sum is always the sum of the averages—even for
multiple sums.

Throughout most of this book, the component-wise calculation just per-
formed will be reprised in a variety of settings. Sometimes, however, it will be
more efficient to employ the fully-equivalent and notationally more compact
vector/matrix approach, which we will illustrate now. Let x, b, and y be
vectors—of the appropriate dimensions—constructed as columns from the co-
efficients {xn}, {bm}, and {ym}, respectively, and let A be the M ×N matrix
whose mnth element is amn. Equation 3.105 can then be rewritten as follows,

y ≡ Ax + b, (3.108)

which can easily be verified by component expansion, using the definition of
matrix multiplication. Even for vectors and matrices, the linearity of expecta-
tion implies that: the average of a sum is the sum of the averages; the average
of a constant times a random quantity is the constant times the average of the
random quantity; and the average of a constant is that constant. Thus, we
readily obtain that

my ≡ E[y] = Amx + b (3.109)

is the mean vector of y, which, in component form, is identical to Eq. 3.106.
Equation 3.109 shows, once again, that the mean output of a linear trans-

formation is the transformation’s response to the mean input. The noise in
the output is thus the response to the noise in the input, viz.

∆y ≡ y −my = A∆x. (3.110)

Multipliying Eq. 3.110 on its right by its transpose and taking expectations
produces a single matrix equation which specifies all the {λymym′

}, namely

Λy ≡ E[∆y∆yT ]

= E[A∆x∆xTAT ]

= AE[∆x∆xT ]AT

= AΛxA
T , (3.111)
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where T denotes transpose. The Λ matrices are covariance matrices. In par-
ticular, because the transpose of a column vector is a row vector, the mm′th
element of Λy is λymym′

, the covariance between ym and ym′ . Matrix multipli-
cation then verifies that the mm′th element of Eq. 3.111 is Eq. 3.107.21

The last point to be made in our brief rundown of random-vector expec-
tations concerns the joint characteristic function. For x a random N -vector
with probability density px(X), its characteristic function is defined to be

Mx(jv) = E[exp(jvTx)] (3.112)

= E

[
∑N

exp

(

j vnxn

)]

, (3.113)
n=1

an obvious extension of the 2-D case. We shall not exhibit the formulas,
but it is worth noting that: knowledge of Mx is equivalent to knowledge of px,
because these functions comprise an N -D Fourier transform pair; and moments
of products of the components of x can be found by differentiating Mx.

Gaussian Random Vectors

We will close our whirlwind tour of probability theory by describing the exten-
sion of jointly Gaussian random variables to the N -D case, i.e., to Gaussian
random vectors. Let x be a random N -vector. Then x is a Gaussian random
vector if, for all deterministic N -vectors a and all deterministic scalars b, the
random variable

N

z ≡ aTx + b = a
n

∑

nxn + b (3.114)
=1

is a 1-D Gaussian. This linear-closure definition is in fact sufficient to show
that

vTΛ v
Mx(j

x
v) = exp

(

jvTmx − 1
2

)

(3.1 5)

is the characteristic function for a Gaussian random vector x with mean vector
mx and covariance matrix Λx. The associated probability density function is

[

− (X−m )T −1

exp x Λx (X−mx)

px(X) =
2

]

√ , (3.116)
(2π)NdetΛx

21In conjunction with Eq. 3.111, we note that the expression yyT , for y an M-vector, is
an outer product—it is an M ×M matrix. The more familiar yT y expression is a scalar
quantity called the inner product.
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where detΛx is the determinant and Λ −1
x is the inverse of the covariance

matrix.
Equation 3.116 would be hopelessly more complicated were it written in

component notation. It is the N -D form of the bell-shaped curve. Its equal-
probability contours are N -D hyperellipsoids. Thankfully, we will seldom, if
ever, have to confront Eq. 3.116 in its full generality. For now, it suffices to
note that, as in the 2-D case, the marginal statistics of a Gaussian random
vector x are all Gaussian, i.e., any subset of a collection of jointly Gaussian
random variables x1, x2, . . . , xN are also jointly Gaussian.22 Thus, because
the jointly Gaussian density of any dimensionality is completely determined
by first and second moments, we never have to perform integrations to find
the marginal statistics of a Gaussian random vector. As in the 2-D case, the
converse result does not hold—there are {x1, x2, . . . , xN} whose 1-D densities
are all Gaussian but whose joint density is not Gaussian.

Two final properties and we shall be done. First, let z be an (N + M)-
D Gaussian random vector partitioned into an N -D vector x and an M-D
vector y, as in Eq. 3.97; because z is a Gaussian random vector, we say that
x and y are jointly Gaussian random vectors. It follows that the conditional
probability density for x, given that y = Y has occurred, is still Gaussian.
Moreover, if every component of x is uncorrelated with every component of y,
i.e., if λxnym

= 0 for 1 ≤ n ≤ N and 1 ≤ m ≤M , then x and y are statistically
independent random vectors.

Finally, for x a Gaussian random N -vector, the random M-vector y ob-
tained from the linear transformation Eq. 3.108 is also Gaussian; its density is
then fully specified by the simple first and second moment results Eqs. 3.109
and 3.111.

22This is easily proven by means of linear closure, e.g., x1 and x2 can be shown to be
jointly Gaussian by using the linear-closure definition with an = 0 for n ≥ 3.
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